Rayhunter项目在ARM64架构Linux上的安装问题与解决方案
Rayhunter是一款用于安全研究的工具,但在ARM64架构的Linux系统上安装时可能会遇到一些问题。本文将详细分析问题原因并提供完整的解决方案。
问题背景
当用户在基于ARM64架构的Linux系统(如Apple Silicon上的Ubuntu虚拟机)上安装Rayhunter时,可能会遇到以下错误信息:
./install-common.sh: line 20: ./serial-ubuntu-latest/serial: cannot execute binary file: Exec format error
这个错误表明安装脚本尝试执行的二进制文件与当前系统的CPU架构不兼容。
根本原因分析
-
架构不匹配:Rayhunter默认提供的Linux版serial工具是x86_64架构的二进制文件,无法在ARM64架构的处理器上直接运行。
-
安装脚本检测不足:安装脚本未能检测到系统架构不兼容的情况,导致用户遇到错误时缺乏明确的提示信息。
解决方案
方法一:使用预编译的ARM64版本
最新版本的Rayhunter已经提供了ARM64架构的Linux可执行文件,用户可以直接使用。
方法二:手动编译ARM64版本
如果预编译版本不可用,用户可以自行编译ARM64架构的serial工具:
- 安装必要的工具链:
rustup target add aarch64-unknown-linux-gnu
- 配置Cargo编译选项:
在项目目录下的
.cargo/config.toml文件中添加以下内容:
[target.aarch64-unknown-linux-gnu]
linker = "aarch64-unknown-linux-gnu-gcc"
rustflags = ["-C", "target-feature=+crt-static"]
- 执行编译:
cargo build --release --target aarch64-unknown-linux-gnu
编译完成后,可在target/aarch64-unknown-linux-gnu/release/目录下找到生成的ARM64架构可执行文件。
方法三:使用Nix进行交叉编译
对于使用Nix包管理器的用户,可以创建如下shell.nix文件进行交叉编译:
with import <nixpkgs>
{
crossSystem = {
config = "aarch64-unknown-linux-gnu";
};
};
mkShell {
buildInputs = [
glibc.static
stdenv
gcc
];
inputsFrom = [glibc cargo];
}
然后执行:
nix-shell
cargo build --release --target aarch64-unknown-linux-gnu
验证解决方案
编译完成后,可以使用file命令验证生成的二进制文件架构:
file target/aarch64-unknown-linux-gnu/release/serial
正确输出应显示为ARM aarch64架构的ELF可执行文件。
注意事项
-
确保系统已安装Android平台工具(android-platform-tools)。
-
如果使用Nix进行编译,首次编译会从源码构建gcc,可能需要较长时间。
-
在某些Linux发行版上,可能需要额外安装交叉编译工具链。
总结
随着ARM架构处理器的普及,越来越多的开发者会在ARM64设备上使用Linux系统。Rayhunter项目已经意识到这一问题,并在最新版本中提供了ARM64架构的支持。对于开发者而言,了解如何在不同架构上编译和运行工具是一项重要的技能。
通过本文介绍的方法,用户可以在ARM64架构的Linux系统上顺利安装和使用Rayhunter工具,无论是使用预编译版本还是自行编译,都能获得良好的使用体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00