Rayhunter项目在ARM64架构Linux上的安装问题与解决方案
Rayhunter是一款用于安全研究的工具,但在ARM64架构的Linux系统上安装时可能会遇到一些问题。本文将详细分析问题原因并提供完整的解决方案。
问题背景
当用户在基于ARM64架构的Linux系统(如Apple Silicon上的Ubuntu虚拟机)上安装Rayhunter时,可能会遇到以下错误信息:
./install-common.sh: line 20: ./serial-ubuntu-latest/serial: cannot execute binary file: Exec format error
这个错误表明安装脚本尝试执行的二进制文件与当前系统的CPU架构不兼容。
根本原因分析
-
架构不匹配:Rayhunter默认提供的Linux版serial工具是x86_64架构的二进制文件,无法在ARM64架构的处理器上直接运行。
-
安装脚本检测不足:安装脚本未能检测到系统架构不兼容的情况,导致用户遇到错误时缺乏明确的提示信息。
解决方案
方法一:使用预编译的ARM64版本
最新版本的Rayhunter已经提供了ARM64架构的Linux可执行文件,用户可以直接使用。
方法二:手动编译ARM64版本
如果预编译版本不可用,用户可以自行编译ARM64架构的serial工具:
- 安装必要的工具链:
rustup target add aarch64-unknown-linux-gnu
- 配置Cargo编译选项:
在项目目录下的
.cargo/config.toml文件中添加以下内容:
[target.aarch64-unknown-linux-gnu]
linker = "aarch64-unknown-linux-gnu-gcc"
rustflags = ["-C", "target-feature=+crt-static"]
- 执行编译:
cargo build --release --target aarch64-unknown-linux-gnu
编译完成后,可在target/aarch64-unknown-linux-gnu/release/目录下找到生成的ARM64架构可执行文件。
方法三:使用Nix进行交叉编译
对于使用Nix包管理器的用户,可以创建如下shell.nix文件进行交叉编译:
with import <nixpkgs>
{
crossSystem = {
config = "aarch64-unknown-linux-gnu";
};
};
mkShell {
buildInputs = [
glibc.static
stdenv
gcc
];
inputsFrom = [glibc cargo];
}
然后执行:
nix-shell
cargo build --release --target aarch64-unknown-linux-gnu
验证解决方案
编译完成后,可以使用file命令验证生成的二进制文件架构:
file target/aarch64-unknown-linux-gnu/release/serial
正确输出应显示为ARM aarch64架构的ELF可执行文件。
注意事项
-
确保系统已安装Android平台工具(android-platform-tools)。
-
如果使用Nix进行编译,首次编译会从源码构建gcc,可能需要较长时间。
-
在某些Linux发行版上,可能需要额外安装交叉编译工具链。
总结
随着ARM架构处理器的普及,越来越多的开发者会在ARM64设备上使用Linux系统。Rayhunter项目已经意识到这一问题,并在最新版本中提供了ARM64架构的支持。对于开发者而言,了解如何在不同架构上编译和运行工具是一项重要的技能。
通过本文介绍的方法,用户可以在ARM64架构的Linux系统上顺利安装和使用Rayhunter工具,无论是使用预编译版本还是自行编译,都能获得良好的使用体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00