Kubernetes Dashboard中通过Helm设置容忍度(Tolerations)的最佳实践
在Kubernetes集群中部署工作负载时,控制节点的调度行为是一个常见需求。本文将以Kubernetes Dashboard项目为例,详细介绍如何通过Helm正确配置工作负载的容忍度(Tolerations),确保Pod能够按预期调度到控制平面节点。
容忍度的基本概念
容忍度(Tolerations)是Kubernetes中一个重要的调度概念,它允许Pod被调度到具有特定污点(Taints)的节点上。在控制平面节点默认带有node-role.kubernetes.io/control-plane:NoSchedule污点的集群中,如果希望工作负载能够调度到这些节点,就需要配置相应的容忍度。
Kubernetes Dashboard的Helm配置问题
在Kubernetes Dashboard 7.5.0版本中,用户报告通过Helm命令行直接设置spec.template.spec.tolerations参数无效。经过验证,正确的配置方式应该是通过Chart提供的特定参数路径:
app:
tolerations:
- key: "node-role.kubernetes.io/control-plane"
effect: "NoSchedule"
metrics-server:
tolerations:
- key: "node-role.kubernetes.io/control-plane"
effect: "NoSchedule"
配置解析
- 应用组件容忍度:通过
app.tolerations参数配置Dashboard核心组件的容忍度 - 指标收集器容忍度:通过
metrics-server.tolerations参数配置metrics-scraper的容忍度
这种设计符合Helm Chart的最佳实践,将配置项组织在逻辑分组下,而不是直接暴露底层的Kubernetes资源结构。
实际应用示例
完整的Helm安装命令应如下:
helm upgrade --install kubernetes-dashboard kubernetes-dashboard/kubernetes-dashboard \
--namespace monitoring \
--set app.tolerations[0].key=node-role.kubernetes.io/control-plane \
--set app.tolerations[0].effect=NoSchedule \
--set metrics-server.tolerations[0].key=node-role.kubernetes.io/control-plane \
--set metrics-server.tolerations[0].effect=NoSchedule
验证配置
部署后可通过以下命令验证容忍度是否生效:
kubectl -n monitoring get deploy -o go-template='{{range .items}}{{.metadata.name}}{{"\t"}}{{.spec.template.spec.tolerations}}{{"\n"}}{{end}}'
设计思考
这种配置方式体现了Kubernetes生态的几个重要设计原则:
- 抽象封装:Helm Chart对底层Kubernetes资源进行了适当封装,提供更符合应用视角的配置参数
- 关注点分离:将应用组件和指标收集器的配置分开管理,提高可维护性
- 版本兼容性:通过参数化配置确保Chart能在不同Kubernetes版本中保持兼容性
总结
正确理解和使用Helm Chart的参数结构是高效管理Kubernetes应用的关键。对于Kubernetes Dashboard这样的核心组件,通过官方Chart提供的参数接口进行配置,既能确保功能正常,又能保持升级的兼容性。掌握这些配置技巧,可以帮助管理员更好地控制工作负载在集群中的分布。
对于需要在控制平面节点运行的特殊工作负载,合理配置容忍度是保证集群稳定性和资源利用率的重要手段。希望本文的解析能帮助读者更深入地理解Kubernetes调度机制的实际应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00