PocketFlow-Typescript项目中的Agent设计模式解析
2025-06-19 20:17:54作者:吴年前Myrtle
什么是Agent设计模式
Agent(代理)设计模式是一种强大的编程范式,它允许节点根据上下文环境动态地采取行动。在PocketFlow-Typescript项目中,Agent模式被广泛应用于构建智能流程控制系统,使程序能够根据实时情况做出决策并执行相应操作。
Agent模式的核心架构
Agent模式通常由以下几个关键组件构成:
- 上下文管理器:负责收集和维护当前环境的状态信息
- 动作空间:定义Agent可以执行的所有可能操作
- 决策引擎:基于上下文选择最合适的动作
- 执行器:实际执行选定的动作
graph TD
A[上下文收集] --> B[决策引擎]
B --> C{动作选择}
C -->|动作1| D[执行器1]
C -->|动作2| E[执行器2]
D --> A
E --> A
在PocketFlow中实现Agent
1. 上下文与动作实现
在PocketFlow-Typescript中,我们需要首先实现能够提供上下文和执行动作的节点:
interface SharedState {
query?: string;
context?: Array<{ term: string; result: string }>;
search_term?: string;
answer?: string;
}
2. 分支控制
使用分支将每个动作节点连接到代理节点,允许Agent根据决策结果控制流程走向:
decide.on("search", search);
decide.on("answer", answer);
search.on("decide", decide); // 实现循环反馈
3. Agent节点设计
Agent节点的核心是一个决策提示模板,它包含:
- 当前任务上下文
- 历史动作记录
- 可用动作空间
- 决策输出格式规范
示例决策提示模板:
`
### 上下文
任务: ${task}
历史动作: ${prevActions}
当前状态: ${state}
### 动作空间
[1] 搜索
描述: 使用网络搜索获取结果
参数: 查询词(string)
[2] 回答
描述: 基于已有结果得出结论
参数: 结果(string)
### 下一步动作
基于当前上下文决定下一步动作。
以YAML格式返回响应:
\`\`\`yaml
思考过程: <推理过程>
动作: <动作名称>
参数: <参数>
\`\`\``;
构建高性能Agent的关键要素
1. 上下文管理最佳实践
- 相关性优先:只提供必要的上下文,避免信息过载
- 分块处理:将大数据集分成可管理的块进行处理
- 增量更新:只传递发生变化的部分上下文
2. 动作空间设计原则
- 明确无歧义:每个动作应有清晰的定义和边界
- 参数化设计:支持可配置的参数传递
- 避免功能重叠:确保动作之间没有重复功能
- 支持撤销:提供回退机制而非完全重启
实战案例:搜索Agent实现
下面我们通过一个完整的搜索Agent示例,展示如何在PocketFlow-Typescript中实现Agent模式:
// 决策节点
class DecideAction extends Node<SharedState> {
async exec([query, context]: [string, string]): Promise<any> {
const prompt = `给定输入: ${query}
历史搜索结果: ${context}
应该: 1) 搜索更多信息 2) 基于当前知识回答
以yaml格式输出:
\`\`\`yaml
动作: search/answer
原因: 为什么选择这个动作
搜索词: 如果是搜索动作则提供搜索词
\`\`\``;
const resp = await callLlm(prompt);
const yamlStr = resp.split("```yaml")[1].split("```")[0].trim();
return yaml.load(yamlStr);
}
}
// 搜索节点
class SearchWeb extends Node<SharedState> {
async exec(searchTerm: string): Promise<string> {
return await searchWeb(searchTerm);
}
async post(shared: SharedState, _: string, execRes: string): Promise<string> {
shared.context = [
...(shared.context || []),
{ term: shared.search_term || "", result: execRes },
];
return "decide"; // 返回决策节点
}
}
// 回答节点
class DirectAnswer extends Node<SharedState> {
async exec([query, context]: [string, string]): Promise<string> {
return await callLlm(`上下文: ${context}\n回答: ${query}`);
}
}
// 构建流程
const flow = new Flow(decide);
await flow.run({ query: "2024年诺贝尔物理学奖得主是谁?" });
这个搜索Agent的工作流程如下:
- 接收用户查询
- 决策节点判断是否需要搜索
- 如果需要搜索,执行搜索并收集结果
- 返回决策节点判断是否已有足够信息
- 当信息充足时,进入回答节点生成最终答案
高级技巧与优化建议
- 上下文压缩:使用摘要技术压缩长上下文,保留关键信息
- 动作优先级:为不同动作设置优先级,处理冲突情况
- 超时机制:为长时间运行的动作设置超时限制
- 验证机制:在执行前验证动作参数的有效性
- 日志记录:详细记录决策过程以便调试优化
通过PocketFlow-Typescript中的Agent设计模式,开发者可以构建出高度灵活、智能的应用程序,能够根据复杂多变的场景做出合理的决策和执行相应的动作。这种模式特别适合需要多步骤决策、动态流程控制的场景,如智能助手、自动化流程引擎等应用。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
283
26