PEFT项目中使用QLoRA和DeepSpeed训练70B大模型的实践指南
2025-05-12 03:26:14作者:段琳惟
在大型语言模型训练过程中,如何高效地利用有限的计算资源进行参数高效微调(PEFT)一直是一个重要课题。本文将详细介绍在使用PEFT项目进行QLoRA(Quantized Low-Rank Adaptation)微调70B参数模型时遇到的技术挑战及解决方案。
环境配置与问题背景
在尝试使用8块NVIDIA H100 GPU进行70B参数模型(Swallow-70b-hf)的QLoRA微调时,开发者遇到了两个主要问题:
-
模型加载阶段出现形状不匹配错误:ValueError: Trying to set a tensor of shape torch.Size([43176, 8192]) in "weight" (which has shape torch.Size([0]))
-
使用DeepSpeed Zero3时GPU显存分配不均,导致OOM错误
关键配置参数
训练配置采用了以下关键技术:
- 4位量化(4-bit quantization)
- 嵌套量化(nested quantization)
- BF16计算精度
- DeepSpeed Zero3优化
- 梯度检查点(gradient checkpointing)
- 梯度累积(gradient accumulation)
问题分析与解决方案
形状不匹配错误分析
该错误通常发生在尝试将权重张量加载到已初始化的模型中时,表明DeepSpeed的模型分片与量化过程存在兼容性问题。经过排查,发现这主要是由于软件版本不兼容导致的。
显存分配不均问题
当使用DeepSpeed Zero3时,理想情况下模型参数应该均匀分布在所有GPU上。但实际观察发现,系统尝试将所有参数加载到第一个GPU,而其他GPU仅使用了极少量显存(3MB),这显然不符合Zero3的设计预期。
最终解决方案
通过以下版本调整解决了上述问题:
- 将PyTorch升级至2.3.1版本
- 将Accelerate降级至0.28.0版本
- 将bitsandbytes降级至0.43.0版本
- 将Transformers升级至4.39.2版本
实践建议
对于希望在类似环境下进行大模型微调的开发者,建议:
- 仔细管理软件版本依赖关系,特别是PyTorch、Accelerate、bitsandbytes和Transformers的组合
- 在正式训练前,先进行小规模测试验证环境配置是否正确
- 监控GPU显存使用情况,确保DeepSpeed的分片策略按预期工作
- 考虑使用更小的模型进行初步验证,以降低调试成本
总结
大模型训练中的参数高效微调技术虽然能显著降低资源需求,但对软件环境配置提出了更高要求。通过本文介绍的解决方案,开发者可以成功在8卡H100服务器上实现70B参数模型的QLoRA微调,为类似场景提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134