PEFT项目中使用QLoRA和DeepSpeed训练70B大模型的实践指南
2025-05-12 07:06:20作者:段琳惟
在大型语言模型训练过程中,如何高效地利用有限的计算资源进行参数高效微调(PEFT)一直是一个重要课题。本文将详细介绍在使用PEFT项目进行QLoRA(Quantized Low-Rank Adaptation)微调70B参数模型时遇到的技术挑战及解决方案。
环境配置与问题背景
在尝试使用8块NVIDIA H100 GPU进行70B参数模型(Swallow-70b-hf)的QLoRA微调时,开发者遇到了两个主要问题:
-
模型加载阶段出现形状不匹配错误:ValueError: Trying to set a tensor of shape torch.Size([43176, 8192]) in "weight" (which has shape torch.Size([0]))
-
使用DeepSpeed Zero3时GPU显存分配不均,导致OOM错误
关键配置参数
训练配置采用了以下关键技术:
- 4位量化(4-bit quantization)
- 嵌套量化(nested quantization)
- BF16计算精度
- DeepSpeed Zero3优化
- 梯度检查点(gradient checkpointing)
- 梯度累积(gradient accumulation)
问题分析与解决方案
形状不匹配错误分析
该错误通常发生在尝试将权重张量加载到已初始化的模型中时,表明DeepSpeed的模型分片与量化过程存在兼容性问题。经过排查,发现这主要是由于软件版本不兼容导致的。
显存分配不均问题
当使用DeepSpeed Zero3时,理想情况下模型参数应该均匀分布在所有GPU上。但实际观察发现,系统尝试将所有参数加载到第一个GPU,而其他GPU仅使用了极少量显存(3MB),这显然不符合Zero3的设计预期。
最终解决方案
通过以下版本调整解决了上述问题:
- 将PyTorch升级至2.3.1版本
- 将Accelerate降级至0.28.0版本
- 将bitsandbytes降级至0.43.0版本
- 将Transformers升级至4.39.2版本
实践建议
对于希望在类似环境下进行大模型微调的开发者,建议:
- 仔细管理软件版本依赖关系,特别是PyTorch、Accelerate、bitsandbytes和Transformers的组合
- 在正式训练前,先进行小规模测试验证环境配置是否正确
- 监控GPU显存使用情况,确保DeepSpeed的分片策略按预期工作
- 考虑使用更小的模型进行初步验证,以降低调试成本
总结
大模型训练中的参数高效微调技术虽然能显著降低资源需求,但对软件环境配置提出了更高要求。通过本文介绍的解决方案,开发者可以成功在8卡H100服务器上实现70B参数模型的QLoRA微调,为类似场景提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210