Whisper-Diarization: 基于OpenAI Whisper的说话人识别解决方案
2024-08-08 07:24:42作者:范靓好Udolf
一、项目介绍
背景与目的
whisper-diarization 是一个融合了OpenAI的Whisper自动语音识别(ASR)能力和先进的音频处理技术的项目。它旨在通过智能识别和标注不同说话人的对话片段来提升多人大型会议记录、电话会议或采访场景中的转录效率及准确性。
核心功能亮点
- 自动语音识别: 利用OpenAI Whisper的强大能力进行高质量的实时语音转文本。
- 说话人识别: 结合语音活动检测(VAD)和说话者嵌入技术来确定每一句话所属的具体说话人。
- 时间戳修正: 使用WhisperX服务对识别出的时间戳进行校正以减少因时间偏移造成的误差。
- 高效去噪: MarbleNet用于去除无意义的静默期,提高转录速度并优化最终结果质量。
二、项目快速启动
为了帮助您迅速上手, 下面将展示如何安装和运行whisper-diarization。我们假设您已经具备基本Python环境。
安装依赖库
首先确保您的环境中已安装以下必需库:
pip install torch librosa numpy scipy
git clone https://github.com/OpenNero/OpenNero.git # Clone OpenNero for dependency management
git clone https://github.com/NVIDIA/NeMo.git # Clone NVIDIA NeMo repo for diarization components
cd whisper-diarization/
pip install -r requirements.txt
运行示例脚本
接下来运行配置好的diarization管道:
python diarize.py --audio_file path/to/audio.wav
务必替换上述命令中的path/to/audio.wav为您要分析的音频文件实际路径。
三、应用案例与最佳实践
示例: 多人讨论会议录音转录
假设您有一段公司内部讨论会议的录音, 您希望将其自动转化为带说话人标注的文字稿:
步骤1: 音频预处理
在进行语音转文字前建议先将音频分割成较短的片断以便更精确地进行说话人识别。
步骤2: 运行Diarization Pipeline
利用diarize_parallel.py脚本来处理多个音频文件:
python diarize_parallel.py --audio_files "path/to/audio1.wav,path/to/audio2.wav" --output_folder path/to/output/
步骤3: 后处理和检查
最后导出转换后的文本数据并检查是否每个发言都正确标出了说话者的ID。
最佳实践
- 在开始大规模任务之前先小范围测试以验证模型性能。
- 如果可能的话, 提供清晰无杂音且每位参与者音量平衡的输入音频将会极大提高识别率和准确度。
四、典型生态项目
- Batched Whisper Inference - 批量推理加速器由@m-bain提供.
- Punctuation Realignment Algorithm - 句法结构调整工具来自@mu4farooqi.
这些项目作为whisper-diarization的周边扩展可以进一步增强其核心功能, 推荐开发者们探索与整合相关组件提升整体系统效能.
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218