Whisper-Diarization: 基于OpenAI Whisper的说话人识别解决方案
2024-08-08 07:24:42作者:范靓好Udolf
一、项目介绍
背景与目的
whisper-diarization 是一个融合了OpenAI的Whisper自动语音识别(ASR)能力和先进的音频处理技术的项目。它旨在通过智能识别和标注不同说话人的对话片段来提升多人大型会议记录、电话会议或采访场景中的转录效率及准确性。
核心功能亮点
- 自动语音识别: 利用OpenAI Whisper的强大能力进行高质量的实时语音转文本。
- 说话人识别: 结合语音活动检测(VAD)和说话者嵌入技术来确定每一句话所属的具体说话人。
- 时间戳修正: 使用WhisperX服务对识别出的时间戳进行校正以减少因时间偏移造成的误差。
- 高效去噪: MarbleNet用于去除无意义的静默期,提高转录速度并优化最终结果质量。
二、项目快速启动
为了帮助您迅速上手, 下面将展示如何安装和运行whisper-diarization。我们假设您已经具备基本Python环境。
安装依赖库
首先确保您的环境中已安装以下必需库:
pip install torch librosa numpy scipy
git clone https://github.com/OpenNero/OpenNero.git # Clone OpenNero for dependency management
git clone https://github.com/NVIDIA/NeMo.git # Clone NVIDIA NeMo repo for diarization components
cd whisper-diarization/
pip install -r requirements.txt
运行示例脚本
接下来运行配置好的diarization管道:
python diarize.py --audio_file path/to/audio.wav
务必替换上述命令中的path/to/audio.wav为您要分析的音频文件实际路径。
三、应用案例与最佳实践
示例: 多人讨论会议录音转录
假设您有一段公司内部讨论会议的录音, 您希望将其自动转化为带说话人标注的文字稿:
步骤1: 音频预处理
在进行语音转文字前建议先将音频分割成较短的片断以便更精确地进行说话人识别。
步骤2: 运行Diarization Pipeline
利用diarize_parallel.py脚本来处理多个音频文件:
python diarize_parallel.py --audio_files "path/to/audio1.wav,path/to/audio2.wav" --output_folder path/to/output/
步骤3: 后处理和检查
最后导出转换后的文本数据并检查是否每个发言都正确标出了说话者的ID。
最佳实践
- 在开始大规模任务之前先小范围测试以验证模型性能。
- 如果可能的话, 提供清晰无杂音且每位参与者音量平衡的输入音频将会极大提高识别率和准确度。
四、典型生态项目
- Batched Whisper Inference - 批量推理加速器由@m-bain提供.
- Punctuation Realignment Algorithm - 句法结构调整工具来自@mu4farooqi.
这些项目作为whisper-diarization的周边扩展可以进一步增强其核心功能, 推荐开发者们探索与整合相关组件提升整体系统效能.
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
417
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
614
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758