EnrichedHeatmap教程:基因组信号富集热图绘制指南
2025-06-07 11:46:55作者:冯梦姬Eddie
概述
EnrichedHeatmap是一个用于可视化基因组信号在特定目标区域富集情况的R包。它能够生成特殊的富集热图,广泛应用于展示如转录起始位点(TSS)附近组蛋白修饰富集模式等场景。
核心功能
- 将基因组信号与目标区域的关联关系转换为矩阵
- 通过热图直观展示富集模式
- 支持多种数据类型的可视化
- 提供丰富的自定义选项
安装与基础使用
首先需要安装并加载EnrichedHeatmap包:
install.packages("EnrichedHeatmap")
library(EnrichedHeatmap)
数据准备
示例数据包含以下对象:
- H3K4me3:ChIP-seq数据的组蛋白修饰覆盖度
- cgi:CpG岛位置信息
- genes:基因信息
- meth:WGBS测序的甲基化数据
- rpkm:RNA-seq基因表达数据
基本分析流程
1. 提取目标区域
以基因TSS为例:
tss = promoters(genes, upstream = 0, downstream = 1)
tss[1:5] # 查看前5个TSS
2. 构建关联矩阵
使用normalizeToMatrix()函数:
mat1 = normalizeToMatrix(H3K4me3, tss,
value_column = "coverage",
extend = 5000,
mean_mode = "w0",
w = 50)
参数说明:
extend:上下游扩展区域大小w:窗口宽度mean_mode:均值计算模式value_column:使用的数值列
3. 绘制热图
EnrichedHeatmap(mat1, name = "H3K4me3")
高级定制
颜色设置
简单颜色向量
EnrichedHeatmap(mat1, col = c("white", "red"), name = "H3K4me3")
处理极端值
方法一:使用keep参数修剪
mat1_trim = normalizeToMatrix(H3K4me3, tss,
value_column = "coverage",
extend = 5000,
mean_mode = "w0",
w = 50,
keep = c(0, 0.99))
方法二:自定义颜色映射函数
library(circlize)
col_fun = colorRamp2(quantile(mat1, c(0, 0.99)), c("white", "red"))
EnrichedHeatmap(mat1, col = col_fun, name = "H3K4me3")
聚类与排序
默认按富集程度排序,也可自定义排序:
# 按特定列排序
EnrichedHeatmap(mat1, cluster_rows = FALSE, row_order = order(...))
注释添加
可添加各种注释信息:
EnrichedHeatmap(mat1,
top_annotation = HeatmapAnnotation(...),
right_annotation = rowAnnotation(...))
实际应用案例
案例1:组蛋白修饰富集分析
# 计算H3K4me3在TSS附近的富集
mat_k4me3 = normalizeToMatrix(H3K4me3, tss, ...)
# 绘制热图
EnrichedHeatmap(mat_k4me3, ...)
案例2:甲基化模式分析
# 计算甲基化在CpG岛附近的模式
mat_meth = normalizeToMatrix(meth, cgi, ...)
# 绘制热图
EnrichedHeatmap(mat_meth, ...)
常见问题解答
Q:如何处理数据中的极端值?
A:可使用keep参数或自定义颜色映射函数处理极端值。
Q:如何改变热图的排序方式?
A:通过cluster_rows和row_order参数控制行排序。
Q:如何添加额外的注释信息?
A:使用top_annotation和right_annotation参数添加注释。
总结
EnrichedHeatmap提供了强大的基因组信号富集可视化功能,通过本教程介绍的基础和高级用法,用户可以灵活地展示各种基因组数据的富集模式。该工具特别适合需要同时展示多个数据集关联关系的复杂分析场景。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
349
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758