EnrichedHeatmap教程:基因组信号富集热图绘制指南
2025-06-07 21:00:36作者:冯梦姬Eddie
概述
EnrichedHeatmap是一个用于可视化基因组信号在特定目标区域富集情况的R包。它能够生成特殊的富集热图,广泛应用于展示如转录起始位点(TSS)附近组蛋白修饰富集模式等场景。
核心功能
- 将基因组信号与目标区域的关联关系转换为矩阵
- 通过热图直观展示富集模式
- 支持多种数据类型的可视化
- 提供丰富的自定义选项
安装与基础使用
首先需要安装并加载EnrichedHeatmap包:
install.packages("EnrichedHeatmap")
library(EnrichedHeatmap)
数据准备
示例数据包含以下对象:
- H3K4me3:ChIP-seq数据的组蛋白修饰覆盖度
- cgi:CpG岛位置信息
- genes:基因信息
- meth:WGBS测序的甲基化数据
- rpkm:RNA-seq基因表达数据
基本分析流程
1. 提取目标区域
以基因TSS为例:
tss = promoters(genes, upstream = 0, downstream = 1)
tss[1:5] # 查看前5个TSS
2. 构建关联矩阵
使用normalizeToMatrix()函数:
mat1 = normalizeToMatrix(H3K4me3, tss,
value_column = "coverage",
extend = 5000,
mean_mode = "w0",
w = 50)
参数说明:
extend:上下游扩展区域大小w:窗口宽度mean_mode:均值计算模式value_column:使用的数值列
3. 绘制热图
EnrichedHeatmap(mat1, name = "H3K4me3")
高级定制
颜色设置
简单颜色向量
EnrichedHeatmap(mat1, col = c("white", "red"), name = "H3K4me3")
处理极端值
方法一:使用keep参数修剪
mat1_trim = normalizeToMatrix(H3K4me3, tss,
value_column = "coverage",
extend = 5000,
mean_mode = "w0",
w = 50,
keep = c(0, 0.99))
方法二:自定义颜色映射函数
library(circlize)
col_fun = colorRamp2(quantile(mat1, c(0, 0.99)), c("white", "red"))
EnrichedHeatmap(mat1, col = col_fun, name = "H3K4me3")
聚类与排序
默认按富集程度排序,也可自定义排序:
# 按特定列排序
EnrichedHeatmap(mat1, cluster_rows = FALSE, row_order = order(...))
注释添加
可添加各种注释信息:
EnrichedHeatmap(mat1,
top_annotation = HeatmapAnnotation(...),
right_annotation = rowAnnotation(...))
实际应用案例
案例1:组蛋白修饰富集分析
# 计算H3K4me3在TSS附近的富集
mat_k4me3 = normalizeToMatrix(H3K4me3, tss, ...)
# 绘制热图
EnrichedHeatmap(mat_k4me3, ...)
案例2:甲基化模式分析
# 计算甲基化在CpG岛附近的模式
mat_meth = normalizeToMatrix(meth, cgi, ...)
# 绘制热图
EnrichedHeatmap(mat_meth, ...)
常见问题解答
Q:如何处理数据中的极端值?
A:可使用keep参数或自定义颜色映射函数处理极端值。
Q:如何改变热图的排序方式?
A:通过cluster_rows和row_order参数控制行排序。
Q:如何添加额外的注释信息?
A:使用top_annotation和right_annotation参数添加注释。
总结
EnrichedHeatmap提供了强大的基因组信号富集可视化功能,通过本教程介绍的基础和高级用法,用户可以灵活地展示各种基因组数据的富集模式。该工具特别适合需要同时展示多个数据集关联关系的复杂分析场景。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
207
220
暂无简介
Dart
646
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
287
React Native鸿蒙化仓库
JavaScript
250
318
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
214
仓颉编程语言运行时与标准库。
Cangjie
134
873