首页
/ Arcade-Learning-Environment v0.11.1版本发布:强化向量环境功能

Arcade-Learning-Environment v0.11.1版本发布:强化向量环境功能

2025-06-20 02:49:50作者:曹令琨Iris

Arcade-Learning-Environment(ALE)是一个经典的强化学习研究平台,它通过模拟Atari 2600游戏环境为研究人员提供了标准化的测试基准。该项目最初由Michael G. Bellemare等人开发,现已成为强化学习领域最广泛使用的工具之一。

向量环境功能全面升级

在v0.11.1版本中,开发团队重点改进了AtariVectorEnv这一实验性功能。这个基于C++的向量化环境实现能够同时运行多个Atari游戏实例,大幅提高了训练效率。本次更新不仅修复了多个关键bug,还新增了多项实用功能。

关键Bug修复

  1. 种子设置问题:修复了当种子值设为0时向量环境无法正确初始化的缺陷。在强化学习中,环境可重现性至关重要,这个修复确保了实验结果的可靠性。

  2. 连续动作处理:修正了向量环境中连续动作的实现方式。这对于需要使用连续动作空间的研究尤为重要,如某些物理模拟或高级控制任务。

  3. 生命周期终止逻辑:当启用episodic_life参数时,现在能正确终止一个episode。这个功能模拟了人类玩家的"生命"概念,是Atari环境特有的重要特性。

  4. 帧跳过机制:改进了帧跳过(frame skip)的实现,确保在向量化环境中也能准确控制观察间隔。帧跳过是提高训练效率的常用技术。

  5. 异步模式结果返回:在异步模式下,现在能确保只返回指定批次大小的结果,避免了数据不一致的问题。

新增功能特性

  1. RGB观察支持:新增了对RGB格式观察值的支持。与传统的灰度图像相比,RGB观察保留了原始游戏的色彩信息,为基于视觉的算法提供了更丰富的数据。

  2. 参数化ROM测试:实现了对每个ROM游戏的参数化测试,提高了测试覆盖率和环境稳定性。

  3. 即时自动重置模式:新增了same-step autoreset模式,在一个episode结束时能立即自动重置环境,简化了训练循环的实现。

  4. XLA支持(实验性):初步添加了对XLA(加速线性代数)的支持。XLA是TensorFlow的编译器,能显著提高计算性能,这对大规模向量化环境尤为重要。

其他重要改进

  1. 环境ID调整:移除了"Deterministic"和"RAM"的环境ID,简化了API设计。这一变更使环境配置更加直观。

  2. 按键映射改进:将get_keys_to_action方法的参数类型从dict[ale_py.Action, tuple[int, ...]]改为dict[str, tuple[int, ...]],提高了接口的易用性。

  3. 跨平台支持:新增了Linux ARM64架构的wheel包,扩展了在ARM平台(如树莓派)上的使用支持。

技术意义与应用价值

本次更新特别强化了向量化环境的稳定性和功能性。向量化环境是现代化强化学习系统的重要组成部分,它通过并行执行多个环境实例,能够:

  • 大幅提高数据采集效率
  • 更好地利用现代多核CPU的计算能力
  • 为分布式训练提供基础支持
  • 减少GPU等待数据的时间

新增的RGB观察支持为基于视觉的强化学习算法提供了更多可能性,而XLA支持则为未来性能优化奠定了基础。即时自动重置模式则简化了训练循环的实现,使研究人员能更专注于算法本身。

对于强化学习研究者而言,v0.11.1版本提供了更稳定、功能更丰富的实验平台,特别是在需要大规模并行训练的场景下,这些改进将显著提升研究效率。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133