TranslationPlugin中的微软翻译API解析异常问题分析
问题背景
在YiiGuxing开发的TranslationPlugin插件中,用户在使用微软翻译服务时遇到了JSON解析异常。该插件是一个IntelliJ平台上的翻译工具,支持多种翻译服务提供商,包括微软翻译API。
错误现象
当用户尝试翻译特定文本时,插件抛出了IllegalStateException异常,错误信息显示"Expected a string but was BEGIN_OBJECT",表明插件在解析微软翻译API返回的JSON响应时遇到了类型不匹配的问题。
技术分析
错误根源
从堆栈跟踪可以看出,问题出现在MicrosoftTranslator.kt文件的parseTranslation方法中。插件期望API返回的JSON中sourceText字段是一个字符串类型,但实际上返回的是一个对象(BEGIN_OBJECT)。
响应数据结构
微软翻译API返回的响应结构如下:
{
"detectedLanguage": {
"language": "te-Latn",
"score": 0.26
},
"sourceText": {
"text": "<b>ఎండిఎస్.ఇంటర్ఫేస్.డీప్-పేజింగ్-అపి</b>=\"హెచ్టిటిపి://192.168.100.112:9006/ఎండిఎస్/అపి/వి1/మార్కెట్/నోటీసులు/డీప్పేజింగ్/{కార్పొరేషన్నం}\" [అప్లికేషన్.ప్రాపర్టీస్]"
},
"translations": [
{
"text": "<b>mds.interface.deep-paging-ap=</b>“http://192.168.100.112:9006/mds/ap/v1/market/notices/deeppaging/{corporation}” [application.properties]",
"to": "zh-Hans"
}
]
}
问题原因
插件的数据模型定义与API实际返回的数据结构不匹配。插件代码中可能将sourceText字段定义为String类型,但微软翻译API返回的是一个包含text字段的对象。
解决方案
开发者已经标记此问题为"fixed",表明已经修复。修复方案可能包括:
- 更新数据模型定义,将
sourceText字段从String类型改为对象类型 - 修改JSON解析逻辑,正确处理嵌套的对象结构
- 添加类型检查和错误处理机制,提高代码的健壮性
技术启示
-
API兼容性:在使用第三方API时,必须严格遵循其响应数据结构,任何不匹配都可能导致解析失败。
-
错误处理:JSON解析应该添加适当的错误处理机制,特别是对于可能变化的API响应。
-
单元测试:对于翻译功能,应该编写针对各种API响应情况的单元测试,包括正常情况和异常情况。
-
版本适配:第三方API可能会更新其响应格式,插件需要保持对API变化的适应性。
总结
这个案例展示了在使用第三方API时类型匹配的重要性。TranslationPlugin通过及时修复这个问题,提高了对微软翻译API的兼容性和稳定性。对于开发者而言,这也提醒我们在集成外部服务时需要充分考虑API响应格式的变化可能性,并设计健壮的解析逻辑。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00