Pointcept项目中PTV3模型在S3DIS数据集上的训练与测试问题分析
2025-07-04 10:45:21作者:温玫谨Lighthearted
问题背景
在使用Pointcept项目中的PTV3模型(启用了flash attention)对S3DIS数据集进行训练时,开发者遇到了一个典型的问题:模型在验证集上表现良好(mIoU达到67),但在测试集上却表现不佳。这种情况在3D点云分割任务中并不罕见,但需要系统性地分析可能的原因。
配置分析
从提供的配置文件中,我们可以看到几个关键点:
-
模型架构:使用了PT-v3m1作为主干网络,这是一种基于Transformer的点云处理架构,具有5层编码器和4层解码器结构。
-
训练参数:
- 批量大小为2
- 使用AdamW优化器,初始学习率为0.0002
- 采用OneCycleLR学习率调度策略
- 训练3000个epoch
-
数据增强:
- 包含多种空间变换(旋转、缩放、翻转)
- 颜色增强(自动对比度、颜色抖动)
- 网格采样(grid_size=0.02)
可能的问题原因
-
数据泄露:验证集和测试集都使用了Area_5,可能导致模型在训练过程中间接"看到"了测试数据。
-
测试配置不当:测试时的数据预处理流程可能与验证时不一致,特别是voxelize和aug_transform的设置。
-
评估指标计算差异:验证和测试时可能使用了不同的指标计算方法。
-
模型保存与加载问题:如开发者最后发现的那样,checkpoint路径错误导致加载了错误的模型权重。
解决方案与最佳实践
-
严格的数据划分:
- 确保验证集和测试集完全独立
- 推荐使用不同的区域作为验证和测试集
-
一致的预处理流程:
- 验证和测试应使用相同的预处理流程
- 特别注意voxelization参数的一致性
-
检查点管理:
- 建立清晰的checkpoint保存和加载机制
- 在加载模型时验证权重是否正确加载
-
测试时增强(TTA)验证:
- 逐步增加测试时增强策略,观察性能变化
- 确保TTA确实带来性能提升而非下降
经验总结
在3D点云分割任务中,训练-验证-测试的性能差异可能由多种因素引起。开发者最终发现的问题(checkpoint路径错误)虽然简单,但很常见。这提醒我们:
- 在模型评估流程中建立完善的检查机制
- 对关键环节(如模型加载)添加验证步骤
- 保持实验记录,便于问题追踪
通过系统性地排查数据、模型和评估流程,可以有效地解决这类性能不一致的问题,确保模型评估结果的可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0124AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.28 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
72

暂无简介
Dart
527
116

仓颉编程语言运行时与标准库。
Cangjie
122
91

React Native鸿蒙化仓库
JavaScript
215
289

Ascend Extension for PyTorch
Python
70
101

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
586

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
567
102

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
400