BookCorpus 开源项目教程
2024-09-13 00:02:48作者:瞿蔚英Wynne
1. 项目介绍
BookCorpus 是一个包含约 7,000 本自出版书籍的数据集,这些书籍是从 Smashwords 网站上抓取的。该数据集主要用于训练大型语言模型,如 OpenAI 的 GPT 模型和 Google 的 BERT 模型。BookCorpus 包含了约 985 百万个单词,涵盖了多种类型,包括浪漫、科幻和奇幻等。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统上已安装以下工具:
- Python 3.6 或更高版本
- Git
2.2 克隆项目
首先,克隆 BookCorpus 项目到本地:
git clone https://github.com/soskek/bookcorpus.git
cd bookcorpus
2.3 安装依赖
安装项目所需的 Python 依赖包:
pip install -r requirements.txt
2.4 下载数据集
运行以下命令下载 BookCorpus 数据集:
python download_files.py
2.5 数据预处理
对下载的数据进行预处理:
python preprocess.py
3. 应用案例和最佳实践
3.1 训练语言模型
BookCorpus 数据集常用于训练语言模型。以下是一个简单的示例,展示如何使用 BookCorpus 数据集训练一个基本的语言模型:
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments
# 加载预训练的 GPT-2 模型和分词器
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
# 创建数据集
dataset = TextDataset(
tokenizer=tokenizer,
file_path='path_to_bookcorpus_data',
block_size=128
)
# 创建数据整理器
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# 设置训练参数
training_args = TrainingArguments(
output_dir='./results',
overwrite_output_dir=True,
num_train_epochs=1,
per_device_train_batch_size=4,
save_steps=10_000,
save_total_limit=2,
)
# 创建 Trainer 实例
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=dataset,
)
# 开始训练
trainer.train()
3.2 文本生成
使用训练好的模型进行文本生成:
input_text = "Once upon a time"
input_ids = tokenizer.encode(input_text, return_tensors='pt')
# 生成文本
output = model.generate(input_ids, max_length=50, num_return_sequences=1)
# 解码生成的文本
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
4. 典型生态项目
4.1 Hugging Face Transformers
Hugging Face 的 Transformers 库是一个广泛使用的自然语言处理库,支持多种预训练模型,包括 GPT 和 BERT。BookCorpus 数据集常用于微调这些模型。
4.2 BERT
BERT(Bidirectional Encoder Representations from Transformers)是由 Google 开发的一种预训练语言模型,广泛应用于各种 NLP 任务。BookCorpus 是 BERT 的训练数据集之一。
4.3 GPT-3
GPT-3(Generative Pre-trained Transformer 3)是由 OpenAI 开发的一种强大的语言模型,能够生成高质量的文本。BookCorpus 数据集在其训练过程中起到了重要作用。
通过本教程,您应该能够快速上手使用 BookCorpus 数据集,并了解其在自然语言处理领域的应用。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1