BookCorpus 开源项目教程
2024-09-13 21:36:33作者:瞿蔚英Wynne
1. 项目介绍
BookCorpus 是一个包含约 7,000 本自出版书籍的数据集,这些书籍是从 Smashwords 网站上抓取的。该数据集主要用于训练大型语言模型,如 OpenAI 的 GPT 模型和 Google 的 BERT 模型。BookCorpus 包含了约 985 百万个单词,涵盖了多种类型,包括浪漫、科幻和奇幻等。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统上已安装以下工具:
- Python 3.6 或更高版本
- Git
2.2 克隆项目
首先,克隆 BookCorpus 项目到本地:
git clone https://github.com/soskek/bookcorpus.git
cd bookcorpus
2.3 安装依赖
安装项目所需的 Python 依赖包:
pip install -r requirements.txt
2.4 下载数据集
运行以下命令下载 BookCorpus 数据集:
python download_files.py
2.5 数据预处理
对下载的数据进行预处理:
python preprocess.py
3. 应用案例和最佳实践
3.1 训练语言模型
BookCorpus 数据集常用于训练语言模型。以下是一个简单的示例,展示如何使用 BookCorpus 数据集训练一个基本的语言模型:
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments
# 加载预训练的 GPT-2 模型和分词器
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
# 创建数据集
dataset = TextDataset(
tokenizer=tokenizer,
file_path='path_to_bookcorpus_data',
block_size=128
)
# 创建数据整理器
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# 设置训练参数
training_args = TrainingArguments(
output_dir='./results',
overwrite_output_dir=True,
num_train_epochs=1,
per_device_train_batch_size=4,
save_steps=10_000,
save_total_limit=2,
)
# 创建 Trainer 实例
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=dataset,
)
# 开始训练
trainer.train()
3.2 文本生成
使用训练好的模型进行文本生成:
input_text = "Once upon a time"
input_ids = tokenizer.encode(input_text, return_tensors='pt')
# 生成文本
output = model.generate(input_ids, max_length=50, num_return_sequences=1)
# 解码生成的文本
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
4. 典型生态项目
4.1 Hugging Face Transformers
Hugging Face 的 Transformers 库是一个广泛使用的自然语言处理库,支持多种预训练模型,包括 GPT 和 BERT。BookCorpus 数据集常用于微调这些模型。
4.2 BERT
BERT(Bidirectional Encoder Representations from Transformers)是由 Google 开发的一种预训练语言模型,广泛应用于各种 NLP 任务。BookCorpus 是 BERT 的训练数据集之一。
4.3 GPT-3
GPT-3(Generative Pre-trained Transformer 3)是由 OpenAI 开发的一种强大的语言模型,能够生成高质量的文本。BookCorpus 数据集在其训练过程中起到了重要作用。
通过本教程,您应该能够快速上手使用 BookCorpus 数据集,并了解其在自然语言处理领域的应用。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
316
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
155
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
241
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K