BookCorpus 开源项目教程
2024-09-13 12:02:45作者:瞿蔚英Wynne
1. 项目介绍
BookCorpus 是一个包含约 7,000 本自出版书籍的数据集,这些书籍是从 Smashwords 网站上抓取的。该数据集主要用于训练大型语言模型,如 OpenAI 的 GPT 模型和 Google 的 BERT 模型。BookCorpus 包含了约 985 百万个单词,涵盖了多种类型,包括浪漫、科幻和奇幻等。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统上已安装以下工具:
- Python 3.6 或更高版本
- Git
2.2 克隆项目
首先,克隆 BookCorpus 项目到本地:
git clone https://github.com/soskek/bookcorpus.git
cd bookcorpus
2.3 安装依赖
安装项目所需的 Python 依赖包:
pip install -r requirements.txt
2.4 下载数据集
运行以下命令下载 BookCorpus 数据集:
python download_files.py
2.5 数据预处理
对下载的数据进行预处理:
python preprocess.py
3. 应用案例和最佳实践
3.1 训练语言模型
BookCorpus 数据集常用于训练语言模型。以下是一个简单的示例,展示如何使用 BookCorpus 数据集训练一个基本的语言模型:
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments
# 加载预训练的 GPT-2 模型和分词器
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
# 创建数据集
dataset = TextDataset(
tokenizer=tokenizer,
file_path='path_to_bookcorpus_data',
block_size=128
)
# 创建数据整理器
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# 设置训练参数
training_args = TrainingArguments(
output_dir='./results',
overwrite_output_dir=True,
num_train_epochs=1,
per_device_train_batch_size=4,
save_steps=10_000,
save_total_limit=2,
)
# 创建 Trainer 实例
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=dataset,
)
# 开始训练
trainer.train()
3.2 文本生成
使用训练好的模型进行文本生成:
input_text = "Once upon a time"
input_ids = tokenizer.encode(input_text, return_tensors='pt')
# 生成文本
output = model.generate(input_ids, max_length=50, num_return_sequences=1)
# 解码生成的文本
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
4. 典型生态项目
4.1 Hugging Face Transformers
Hugging Face 的 Transformers 库是一个广泛使用的自然语言处理库,支持多种预训练模型,包括 GPT 和 BERT。BookCorpus 数据集常用于微调这些模型。
4.2 BERT
BERT(Bidirectional Encoder Representations from Transformers)是由 Google 开发的一种预训练语言模型,广泛应用于各种 NLP 任务。BookCorpus 是 BERT 的训练数据集之一。
4.3 GPT-3
GPT-3(Generative Pre-trained Transformer 3)是由 OpenAI 开发的一种强大的语言模型,能够生成高质量的文本。BookCorpus 数据集在其训练过程中起到了重要作用。
通过本教程,您应该能够快速上手使用 BookCorpus 数据集,并了解其在自然语言处理领域的应用。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K