BookCorpus 开源项目教程
2024-09-13 11:46:08作者:瞿蔚英Wynne
1. 项目介绍
BookCorpus 是一个包含约 7,000 本自出版书籍的数据集,这些书籍是从 Smashwords 网站上抓取的。该数据集主要用于训练大型语言模型,如 OpenAI 的 GPT 模型和 Google 的 BERT 模型。BookCorpus 包含了约 985 百万个单词,涵盖了多种类型,包括浪漫、科幻和奇幻等。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统上已安装以下工具:
- Python 3.6 或更高版本
- Git
2.2 克隆项目
首先,克隆 BookCorpus 项目到本地:
git clone https://github.com/soskek/bookcorpus.git
cd bookcorpus
2.3 安装依赖
安装项目所需的 Python 依赖包:
pip install -r requirements.txt
2.4 下载数据集
运行以下命令下载 BookCorpus 数据集:
python download_files.py
2.5 数据预处理
对下载的数据进行预处理:
python preprocess.py
3. 应用案例和最佳实践
3.1 训练语言模型
BookCorpus 数据集常用于训练语言模型。以下是一个简单的示例,展示如何使用 BookCorpus 数据集训练一个基本的语言模型:
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments
# 加载预训练的 GPT-2 模型和分词器
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
# 创建数据集
dataset = TextDataset(
tokenizer=tokenizer,
file_path='path_to_bookcorpus_data',
block_size=128
)
# 创建数据整理器
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# 设置训练参数
training_args = TrainingArguments(
output_dir='./results',
overwrite_output_dir=True,
num_train_epochs=1,
per_device_train_batch_size=4,
save_steps=10_000,
save_total_limit=2,
)
# 创建 Trainer 实例
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=dataset,
)
# 开始训练
trainer.train()
3.2 文本生成
使用训练好的模型进行文本生成:
input_text = "Once upon a time"
input_ids = tokenizer.encode(input_text, return_tensors='pt')
# 生成文本
output = model.generate(input_ids, max_length=50, num_return_sequences=1)
# 解码生成的文本
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
4. 典型生态项目
4.1 Hugging Face Transformers
Hugging Face 的 Transformers 库是一个广泛使用的自然语言处理库,支持多种预训练模型,包括 GPT 和 BERT。BookCorpus 数据集常用于微调这些模型。
4.2 BERT
BERT(Bidirectional Encoder Representations from Transformers)是由 Google 开发的一种预训练语言模型,广泛应用于各种 NLP 任务。BookCorpus 是 BERT 的训练数据集之一。
4.3 GPT-3
GPT-3(Generative Pre-trained Transformer 3)是由 OpenAI 开发的一种强大的语言模型,能够生成高质量的文本。BookCorpus 数据集在其训练过程中起到了重要作用。
通过本教程,您应该能够快速上手使用 BookCorpus 数据集,并了解其在自然语言处理领域的应用。
热门项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
267
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4