Scholarly Python包返回结果截断问题分析与解决方案
2025-07-10 22:47:57作者:董斯意
问题现象
在使用Scholarly Python包进行学术论文搜索时,部分返回结果中的关键字段如摘要(abstract)和发表场所(venue)出现了截断现象。例如,当搜索"Perception of physical stability and center of mass of 3D objects"时,返回的摘要和发表场所信息不完整,这会影响用户获取完整的论文信息。
原因分析
经过技术分析,这个问题并非由Scholarly包本身引起,而是源于Google Scholar API返回的数据格式。Google Scholar在返回搜索结果时,默认只提供摘要和发表场所的片段(snippet),而非完整内容。这种设计可能是出于性能考虑,减少数据传输量。
解决方案
要获取完整的论文信息,可以使用Scholarly包提供的fill方法。这个方法会向Google Scholar发送额外请求,获取指定论文的完整信息。具体实现方式如下:
from scholarly import scholarly
from pprint import pprint
# 首先获取搜索结果的初始片段
search_query = scholarly.search_pubs(query='Perception of physical stability and center of mass of 3D objects', year_low=2010)
pub = next(search_query)
# 然后使用fill方法获取完整信息
filled_pub = scholarly.fill(pub)
pprint(filled_pub)
技术细节
- 初始搜索:
search_pubs方法返回的是轻量级结果,包含基本信息但不完整 - 填充过程:
fill方法会:- 根据论文ID向Google Scholar发送详细查询
- 解析返回的完整HTML页面
- 提取包括完整摘要、作者信息、引用数据等在内的所有可用信息
- 性能考虑:由于需要额外请求,fill操作会增加程序运行时间
最佳实践建议
- 对于批量处理,建议先获取轻量级结果列表,再选择性填充重要论文
- 合理设置请求间隔,避免被Google Scholar限制访问
- 考虑缓存已填充的结果,减少重复请求
- 处理异常情况,如网络问题或结果不可用等
总结
Scholarly包作为Google Scholar的非官方API封装,提供了便捷的学术搜索功能。理解其返回结果的层次结构(片段vs完整信息)对于有效使用该工具至关重要。通过合理使用fill方法,开发者可以获取所需的完整学术信息,同时保持程序效率。
对于需要频繁访问学术数据的应用,建议结合本地缓存机制,既保证数据完整性,又优化访问性能。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92