Scholarly Python包返回结果截断问题分析与解决方案
2025-07-10 05:35:58作者:董斯意
问题现象
在使用Scholarly Python包进行学术论文搜索时,部分返回结果中的关键字段如摘要(abstract)和发表场所(venue)出现了截断现象。例如,当搜索"Perception of physical stability and center of mass of 3D objects"时,返回的摘要和发表场所信息不完整,这会影响用户获取完整的论文信息。
原因分析
经过技术分析,这个问题并非由Scholarly包本身引起,而是源于Google Scholar API返回的数据格式。Google Scholar在返回搜索结果时,默认只提供摘要和发表场所的片段(snippet),而非完整内容。这种设计可能是出于性能考虑,减少数据传输量。
解决方案
要获取完整的论文信息,可以使用Scholarly包提供的fill方法。这个方法会向Google Scholar发送额外请求,获取指定论文的完整信息。具体实现方式如下:
from scholarly import scholarly
from pprint import pprint
# 首先获取搜索结果的初始片段
search_query = scholarly.search_pubs(query='Perception of physical stability and center of mass of 3D objects', year_low=2010)
pub = next(search_query)
# 然后使用fill方法获取完整信息
filled_pub = scholarly.fill(pub)
pprint(filled_pub)
技术细节
- 初始搜索:
search_pubs方法返回的是轻量级结果,包含基本信息但不完整 - 填充过程:
fill方法会:- 根据论文ID向Google Scholar发送详细查询
- 解析返回的完整HTML页面
- 提取包括完整摘要、作者信息、引用数据等在内的所有可用信息
- 性能考虑:由于需要额外请求,fill操作会增加程序运行时间
最佳实践建议
- 对于批量处理,建议先获取轻量级结果列表,再选择性填充重要论文
- 合理设置请求间隔,避免被Google Scholar限制访问
- 考虑缓存已填充的结果,减少重复请求
- 处理异常情况,如网络问题或结果不可用等
总结
Scholarly包作为Google Scholar的非官方API封装,提供了便捷的学术搜索功能。理解其返回结果的层次结构(片段vs完整信息)对于有效使用该工具至关重要。通过合理使用fill方法,开发者可以获取所需的完整学术信息,同时保持程序效率。
对于需要频繁访问学术数据的应用,建议结合本地缓存机制,既保证数据完整性,又优化访问性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134