在lm-evaluation-harness项目中加载本地MMLU数据集的技术指南
背景介绍
MMLU(Massive Multitask Language Understanding)是一个大规模多任务语言理解评估数据集,广泛应用于大语言模型的性能评测。在EleutherAI的lm-evaluation-harness项目中,MMLU是重要的基准测试任务之一。本文将详细介绍如何在本地环境中正确配置和使用MMLU数据集。
数据集准备
首先需要从Hugging Face下载MMLU数据集。官方推荐使用cais/mmlu仓库而非hails/mmlu_no_train,因为前者包含更完整的训练集和验证集。下载完成后,建议将数据集存放在易于访问的本地路径中。
配置文件修改
lm-evaluation-harness项目通过YAML配置文件定义任务参数。对于MMLU任务,主要需要修改以下配置项:
- dataset_path:设置为本地数据集存放的绝对路径
- dataset_kwargs:可以添加额外的数据集加载参数
典型的配置示例如下:
dataset_path: /path/to/local/mmlu
test_split: test
fewshot_split: dev
fewshot_config:
sampler: first_n
output_type: multiple_choice
doc_to_text: "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:"
doc_to_choice: ["A", "B", "C", "D"]
doc_to_target: answer
metric_list:
- metric: acc
aggregation: mean
higher_is_better: true
metadata:
version: 1.0
dataset_kwargs:
trust_remote_code: true
常见问题解决
在实际使用过程中,可能会遇到以下问题:
-
文件损坏错误:表现为"Parquet magic bytes not found in footer"错误。这通常是由于下载过程中文件损坏导致的。解决方案是重新下载数据集,并确保下载完整。
-
数据集加载失败:MMLU数据集包含多个子集,每个子集需要单独加载。确保配置文件中正确指定了dataset_name参数。
-
路径问题:使用绝对路径而非相对路径可以避免许多加载问题。特别是在分布式环境中,相对路径可能导致文件找不到的错误。
最佳实践建议
-
在首次使用前,建议先单独测试数据集加载功能,确认无误后再进行完整评估。
-
对于大型评估任务,可以考虑将数据集放在高速存储设备上,以提高加载速度。
-
定期检查数据集完整性,特别是当评估结果出现异常时。
-
在团队协作环境中,建议统一数据集存放路径,便于配置管理。
通过以上步骤和注意事项,开发者可以顺利地在lm-evaluation-harness项目中使用本地MMLU数据集进行模型评估。正确配置数据集是获得可靠评估结果的第一步,值得投入必要的时间进行验证和测试。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00