首页
/ 在lm-evaluation-harness项目中加载本地MMLU数据集的技术指南

在lm-evaluation-harness项目中加载本地MMLU数据集的技术指南

2025-05-26 10:43:11作者:冯梦姬Eddie

背景介绍

MMLU(Massive Multitask Language Understanding)是一个大规模多任务语言理解评估数据集,广泛应用于大语言模型的性能评测。在EleutherAI的lm-evaluation-harness项目中,MMLU是重要的基准测试任务之一。本文将详细介绍如何在本地环境中正确配置和使用MMLU数据集。

数据集准备

首先需要从Hugging Face下载MMLU数据集。官方推荐使用cais/mmlu仓库而非hails/mmlu_no_train,因为前者包含更完整的训练集和验证集。下载完成后,建议将数据集存放在易于访问的本地路径中。

配置文件修改

lm-evaluation-harness项目通过YAML配置文件定义任务参数。对于MMLU任务,主要需要修改以下配置项:

  1. dataset_path:设置为本地数据集存放的绝对路径
  2. dataset_kwargs:可以添加额外的数据集加载参数

典型的配置示例如下:

dataset_path: /path/to/local/mmlu
test_split: test
fewshot_split: dev
fewshot_config:
  sampler: first_n
output_type: multiple_choice
doc_to_text: "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:"
doc_to_choice: ["A", "B", "C", "D"]
doc_to_target: answer
metric_list:
  - metric: acc
    aggregation: mean
    higher_is_better: true
metadata:
  version: 1.0
dataset_kwargs:
  trust_remote_code: true

常见问题解决

在实际使用过程中,可能会遇到以下问题:

  1. 文件损坏错误:表现为"Parquet magic bytes not found in footer"错误。这通常是由于下载过程中文件损坏导致的。解决方案是重新下载数据集,并确保下载完整。

  2. 数据集加载失败:MMLU数据集包含多个子集,每个子集需要单独加载。确保配置文件中正确指定了dataset_name参数。

  3. 路径问题:使用绝对路径而非相对路径可以避免许多加载问题。特别是在分布式环境中,相对路径可能导致文件找不到的错误。

最佳实践建议

  1. 在首次使用前,建议先单独测试数据集加载功能,确认无误后再进行完整评估。

  2. 对于大型评估任务,可以考虑将数据集放在高速存储设备上,以提高加载速度。

  3. 定期检查数据集完整性,特别是当评估结果出现异常时。

  4. 在团队协作环境中,建议统一数据集存放路径,便于配置管理。

通过以上步骤和注意事项,开发者可以顺利地在lm-evaluation-harness项目中使用本地MMLU数据集进行模型评估。正确配置数据集是获得可靠评估结果的第一步,值得投入必要的时间进行验证和测试。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133