首页
/ ONNX项目中关于asinh算子支持的深入解析

ONNX项目中关于asinh算子支持的深入解析

2025-05-12 09:23:35作者:宣聪麟

背景介绍

在深度学习模型部署过程中,ONNX作为一种开放的模型格式,扮演着重要角色。PyTorch作为主流深度学习框架之一,提供了将模型导出为ONNX格式的功能。然而,在实际操作中,开发者可能会遇到一些算子支持的问题,比如本文讨论的asinh(反双曲正弦)算子。

asinh算子在ONNX中的支持情况

根据ONNX官方文档,asinh算子从ONNX opset 9版本开始就已经被支持。这意味着理论上,任何使用opset 9及以上版本的ONNX模型都可以使用这个算子。然而,在实际导出过程中,即使用户明确指定了较高的opset版本(如20),仍然可能遇到"unsupported operator"的错误提示。

问题根源分析

这个问题的根本原因在于PyTorch的ONNX导出机制。PyTorch提供了两种不同的ONNX导出路径:

  1. 传统TorchScript路径(dynamo=False):这是PyTorch早期实现的导出方式,基于TorchScript技术。这个路径的算子支持表更新相对滞后,可能没有及时包含较新的ONNX算子支持。

  2. 新Dynamo路径(dynamo=True):这是PyTorch团队正在积极开发的新一代导出器,采用了更现代的Dynamo技术。这个路径的算子支持更加全面,更新也更及时。

解决方案

针对asinh算子导出失败的问题,最直接的解决方案是:

torch.onnx.export(..., dynamo=True, report=True)

这个方案有以下几个优势:

  1. 使用新的Dynamo导出路径,支持更多ONNX算子
  2. 通过report参数可以生成详细的导出报告,便于调试
  3. 代表了PyTorch ONNX导出的未来方向

技术建议

对于PyTorch用户,我们建议:

  1. 优先尝试使用dynamo=True参数进行ONNX导出
  2. 保持PyTorch版本更新,特别是使用torch-nightly版本可以获得最新的支持
  3. 对于复杂的模型导出,可以结合report=True参数获取详细导出信息
  4. 了解PyTorch团队正在将重心从TorchScript转向Dynamo技术路线

总结

ONNX作为模型交换格式,其算子支持是一个动态发展的过程。PyTorch的ONNX导出机制也在不断演进。开发者遇到算子支持问题时,除了检查ONNX官方文档外,还应该关注PyTorch导出器的实现细节和最新进展。采用新的Dynamo导出路径,往往能够解决许多传统导出路径下的算子支持问题。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133