OpenTelemetry Python 使用教程
2024-08-10 19:40:59作者:卓炯娓
项目介绍
OpenTelemetry Python 是一个开源项目,提供了用于分布式跟踪、度量和日志记录的API和SDK。它是OpenTelemetry项目的一部分,旨在为开发人员提供一套标准化的工具,以便更好地监控和调试他们的应用程序。
项目快速启动
安装依赖
首先,确保你已经安装了Python和pip。然后,使用以下命令安装OpenTelemetry API和SDK:
pip install opentelemetry-api
pip install opentelemetry-sdk
初始化跟踪组件
以下是一个简单的示例,展示如何初始化并使用OpenTelemetry进行跟踪:
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import SimpleSpanProcessor, ConsoleSpanExporter
# 初始化TracerProvider
trace.set_tracer_provider(TracerProvider())
# 添加ConsoleSpanExporter
trace.get_tracer_provider().add_span_processor(
SimpleSpanProcessor(ConsoleSpanExporter())
)
# 获取tracer
tracer = trace.get_tracer(__name__)
# 创建一个span
with tracer.start_as_current_span("example-span"):
print("Hello world!")
运行上述代码后,你将在控制台看到生成的跟踪信息。
应用案例和最佳实践
应用案例
假设你有一个Web应用程序,你希望跟踪每个HTTP请求的处理时间。你可以使用OpenTelemetry来实现这一点:
from flask import Flask, request
from opentelemetry import trace
from opentelemetry.instrumentation.flask import FlaskInstrumentor
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import SimpleSpanProcessor, ConsoleSpanExporter
app = Flask(__name__)
# 初始化OpenTelemetry
trace.set_tracer_provider(TracerProvider())
trace.get_tracer_provider().add_span_processor(
SimpleSpanProcessor(ConsoleSpanExporter())
)
# 自动检测Flask应用
FlaskInstrumentor().instrument_app(app)
@app.route("/")
def hello():
return "Hello, OpenTelemetry!"
if __name__ == "__main__":
app.run(debug=True)
最佳实践
- 使用 exporters:除了控制台输出,还可以使用其他exporters(如Jaeger、Zipkin)将跟踪数据发送到外部系统。
- 配置采样:在高流量环境中,配置采样策略以减少跟踪数据量。
- 集成其他库:使用OpenTelemetry提供的各种instrumentation库,自动检测常见的Python库和框架。
典型生态项目
OpenTelemetry Python 生态系统包含多个相关项目,以下是一些典型的生态项目:
- opentelemetry-python-contrib:包含各种instrumentation库,用于自动检测常见的Python库和框架。
- opentelemetry-exporter-jaeger:用于将跟踪数据发送到Jaeger。
- opentelemetry-exporter-zipkin:用于将跟踪数据发送到Zipkin。
通过这些生态项目,你可以更全面地集成OpenTelemetry到你的应用程序中,实现更强大的监控和调试功能。
登录后查看全文
热门项目推荐
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen-Image我们隆重推出 Qwen-Image,这是通义千问系列中的图像生成基础模型,在复杂文本渲染和精准图像编辑方面取得重大突破。Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,面向全球开发者、创造者及科技爱好者,吹响AI应用开发的集结号!08- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0259- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
819
487

openGauss kernel ~ openGauss is an open source relational database management system
C++
120
175

React Native鸿蒙化仓库
C++
163
252

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
322
1.07 K

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
172
259

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
79
2

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.05 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
818
22

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
719
102

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
568
51