Qwen3模型微调实践:从对话到文本续写的技术探索
2025-05-11 08:29:17作者:昌雅子Ethen
基础模型微调的关键配置
在Qwen3项目中进行基础模型微调时,一个常见问题是模型在生成内容后无法正确停止,会继续输出训练数据中的内容。这通常是由于模型配置中未正确设置结束标记导致的。技术解决方案是在config.json和generation_config.json文件中明确指定eos_token和eos_token_id为"<|im_end|>"及其对应的ID值151645。
从对话到文本续写的范式转换
许多开发者在使用Qwen3时希望将模型从对话任务转向文本续写任务,这需要重新设计训练数据的格式和微调方法。与对话任务不同,文本续写任务要求模型能够理解上下文并自然地延续文本内容,同时知道在适当的位置停止生成。
文本续写任务的数据设计
对于文本续写任务,训练数据应采用连续文本的形式,避免对话格式中的轮次分隔。每条训练样本应包含:
- 上下文文本:作为模型输入的提示部分
- 续写文本:作为模型需要学习的输出目标
- 明确的结束标记:确保模型知道何时停止生成
微调技术要点
进行文本续写微调时,需要注意以下技术细节:
- 输入长度控制:确保上下文部分不超过模型的最大长度限制
- 损失计算:只对续写部分计算损失,忽略上下文部分的损失
- 停止策略:在generation_config中配置适当的停止条件
- 评估指标:设计合理的评估方法来衡量续写质量
实际应用中的挑战与解决方案
实践中发现,直接将对话模型转为续写模型可能会遇到以下问题:
- 过度生成:模型倾向于生成过长内容
- 内容偏离:续写内容逐渐偏离原始主题
- 停止不及时:无法在语义完整的节点停止
解决这些问题的方法包括:
- 在训练数据中精心设计停止点
- 调整生成参数如temperature和top_p
- 使用更精确的评估指标指导微调过程
进阶技巧与最佳实践
对于希望获得更好续写效果的开发者,可以尝试:
- 课程学习:从简单续写任务逐步过渡到复杂任务
- 数据增强:通过回译等方法增加数据多样性
- 多阶段微调:先进行领域适应再进行续写能力微调
- 强化学习:使用人工反馈进一步优化生成质量
通过以上方法,开发者可以有效地将Qwen3模型适配到各种文本续写场景,如故事创作、技术文档补全、代码生成等应用领域。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322