BoundaryML项目中Chain of Thought提示模式的优化实践
2025-06-26 04:21:02作者:史锋燃Gardner
baml
A programming language to build strongly-typed LLM functions. Testing and observability included
在BoundaryML项目中,开发者们发现文档中关于Chain of Thought(CoT)提示方法的实现方式存在可读性和易用性方面的问题。传统的实现方式需要开发者在BAML函数中编写冗长的字符串模板,这不仅降低了代码的可维护性,也影响了提示工程的整体效率。
问题分析
Chain of Thought是一种让AI模型展示其推理过程的提示技术。在原始实现中,开发者需要将完整的CoT提示直接嵌入到函数模板中,这种方式存在几个明显缺陷:
- 提示文本与业务逻辑高度耦合
- 长字符串模板影响代码可读性
- 难以复用相同的CoT逻辑
- 不利于提示工程的迭代优化
解决方案探索
项目社区提出了两种改进方案:
方案一:模板字符串抽象
通过将CoT提示提取为独立的template_string,实现了关注点分离:
template_string CoT() #"
在输出JSON前,请逐步解释你的推理过程...
"#
function MyFunction() {
...
{{ CoT("..") }}
}
这种方式的优势在于:
- 保持业务逻辑的清晰性
- 便于CoT提示的集中管理
- 支持跨函数复用
- 提升整体代码可读性
方案二:输出类属性扩展
另一种创新方法是在输出类中直接添加chain_of_thought属性:
class Receipt {
...
chain_of_thought string[] @description("逐步解释你的推理过程")
}
这种方法的特点是:
- 结构化地获取推理过程
- 无需修改原始提示模板
- 推理过程与输出数据自然结合
- 支持多步推理的详细记录
技术价值
这两种改进方案都体现了BoundaryML项目在提示工程领域的前沿思考:
- 关注点分离:将推理逻辑与业务逻辑解耦,符合软件工程的最佳实践
- 可维护性提升:集中管理提示模板,便于后续迭代优化
- 开发体验优化:简化了复杂提示的实现方式,降低使用门槛
- 结构化输出:特别是第二种方案,提供了机器可读的推理过程
最佳实践建议
基于项目讨论,我们总结出以下实践建议:
- 对于需要复杂推理的场景,优先考虑使用CoT技术
- 根据具体需求选择实现方式:
- 需要灵活控制提示内容时,采用模板字符串方案
- 需要结构化推理过程时,采用输出类扩展方案
- 保持提示描述的清晰性,使用@description等注解增强可读性
- 考虑将常用提示模式抽象为可复用组件
BoundaryML项目通过这些改进,不仅解决了文档中的可用性问题,更为开发者提供了更优雅的提示工程实践方案,展现了框架在AI应用开发领域的持续创新。
baml
A programming language to build strongly-typed LLM functions. Testing and observability included
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660