OpenBMB/OmniLMM模型微调中的数值稳定性问题分析与解决方案
2025-05-11 08:14:19作者:瞿蔚英Wynne
问题现象
在使用OpenBMB/OmniLMM项目进行模型微调时,用户报告了一个典型的数值稳定性问题:v2.6版本的原始模型可以正常推理,但在进行微调后出现了"RuntimeError: probability tensor contains either inf, nan or element < 0"的错误。这种问题在大型语言模型训练中并不罕见,特别是在使用混合精度训练时。
问题本质分析
这个错误信息表明在计算概率分布时出现了非法的数值,具体可能包含以下几种情况:
- 无限大(inf)值
- 非数值(nan)
- 负数元素
在深度学习训练中,这类问题通常源于数值不稳定,特别是在使用低精度(如float16)训练时。当模型参数或中间计算结果超出该精度所能表示的范围时,就会产生这类异常。
可能的原因
- 梯度爆炸:在微调过程中,某些层的梯度变得过大,导致参数更新后产生异常值
- 学习率设置不当:过大的学习率可能导致参数更新步幅过大
- 损失函数计算不稳定:特别是在计算softmax等涉及指数运算的函数时
- 混合精度训练问题:float16的表示范围有限(约±65504),容易在计算过程中溢出
解决方案
1. 使用更高精度训练
最直接的解决方案是使用fp32精度训练,这可以避免大多数数值溢出问题。但如用户反馈,在V100等显卡上使用fp32会导致显存占用大幅增加。
2. 混合精度训练优化
对于必须使用float16的情况,可以尝试以下优化措施:
- 梯度裁剪:设置合理的梯度裁剪阈值,防止梯度爆炸
- 学习率调整:适当降低学习率,或使用学习率预热(warmup)策略
- 损失缩放:在混合精度训练中,对损失值进行适当放大,避免梯度下溢
- 稳定性优化:在计算softmax时使用log_softmax或添加极小值(epsilon)防止数值不稳定
3. 模型结构调整
- 检查并调整模型中的归一化层(如LayerNorm)位置
- 确保激活函数的选择合理(如使用GELU代替ReLU)
- 添加适当的权重初始化策略
4. 监控与调试
- 实现训练过程中的数值监控,及时发现异常
- 在关键计算点添加断言检查
- 定期保存检查点,便于问题回溯
实践建议
对于OpenBMB/OmniLMM项目的用户,特别是使用V100等不支持bf16的硬件时,建议采取以下实践步骤:
- 首先尝试使用fp32验证是否是精度问题
- 确认问题后,逐步引入混合精度训练优化措施
- 从较小的学习率开始,配合学习率预热
- 实现训练过程的详细日志记录,便于问题诊断
- 考虑使用梯度累积等技术缓解显存压力
数值稳定性问题是深度学习训练中的常见挑战,通过系统性的分析和适当的优化措施,通常可以有效解决这类问题,确保模型训练的顺利进行。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
164
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
952
560

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.01 K
396

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
407
387

React Native鸿蒙化仓库
C++
199
279

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0