MONAI研究贡献指南
2024-08-20 22:27:47作者:伍希望
项目介绍
MONAI 是一个由 NVIDIA 领导并得到广泛社区支持的医疗影像 AI 开发库,专为医疗保健领域的深度学习应用程序设计。该项目旨在加速从研究到生产的转化过程,通过提供一系列高效的工具和模块,使得开发者能够便捷地构建、训练和部署医疗影像分析模型。其研究贡献分支汇聚了创新的实验、原型和最新的研究成果。
项目快速启动
要快速启动并运行 MONAI 的研究贡献部分,首先确保你已经安装了必要的依赖项,包括 Python 3.7+ 和其他 MONAI 核心库。以下是克隆项目并运行一个基本示例的步骤:
步骤1: 克隆项目
git clone https://github.com/Project-MONAI/research-contributions.git
cd research-contributions
步骤2: 安装依赖
建议在虚拟环境中操作以避免版本冲突。激活虚拟环境后,执行以下命令来安装 MONAI 及其研究贡献所需的额外包(此部分可能需要查阅具体 README 文件以获取最新安装指令)。
pip install -r requirements.txt
示例代码快速体验
这里提供一个简化的示例,展示如何加载医学影像数据并进行简单的预处理,实际项目中会有更复杂的研究级示例:
from monai.data import DataLoader, ImageDataset
from monai.transforms import Compose, LoadImaged, NormalizeIntensityd, ToTensord
# 假设你有一个数据目录路径 'data/path'
images = ['data/path/image_01.nii.gz', 'data/path/image_02.nii.gz']
labels = ['data/path/label_01.nii.gz', 'data/path/label_02.nii.gz']
dataset = ImageDataset(data={'image': images, 'label': labels})
transform = Compose([LoadImaged(keys=['image', 'label']),
NormalizeIntensityd(keys='image'),
ToTensord(keys=['image', 'label'])])
dataloader = DataLoader(dataset, batch_size=2, transform=transform)
for batch_data in dataloader:
print(batch_data["image"].shape, batch_data["label"].shape)
应用案例与最佳实践
在实际应用中,MONAI 研究贡献部分提供了多种案例,涵盖病变检测、分割任务、图像重建等多个领域。开发者可以参考这些案例来了解如何结合特定的数据集和算法实现自己的医疗影像AI解决方案。例如,利用UNet模型进行肝脏肿瘤分割是一个典型的案例,它演示了从数据预处理到模型训练再到评估的全流程。
推荐实践
- 标准化前处理:始终对输入图像应用标准化和归一化,以减少不同扫描设备间的变异。
- 模型选择与调优:基于任务选择合适的基础模型,如UNETR对于3D医学影像分割表现优异,并进行超参数调优以提高性能。
- 利用现有模块:充分利用MONAI提供的丰富转换(transforms)和工作流程管理工具,以便于实验复现和快速开发。
典型生态项目
MONAI生态系统拓展迅速,其中包括但不限于:
- MONAI Label:提供交互式的图像标注工具,便于创建高质量的标签数据。
- MONAI Deploy App SDK:允许将训练好的模型打包成容器化应用,便于在不同的医疗系统中部署。
- MONAI Workflows:高级管道组件,用于构建复杂的模型训练和推理工作流。
通过上述模块的集成,MONAI 构建了一个强大的框架,支持医疗影像AI的全周期研发,从数据准备、模型训练到最终的应用部署。深入探索这些生态项目可以大大提升医疗影像AI的研发效率和成果质量。
请注意,具体实例代码和配置可能会随项目更新而变化,务必参照项目仓库的最新文档和示例代码。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
663
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
297
Ascend Extension for PyTorch
Python
216
235
React Native鸿蒙化仓库
JavaScript
254
320
仓颉编译器源码及 cjdb 调试工具。
C++
132
866
仓颉编程语言运行时与标准库。
Cangjie
139
874
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
648
仓颉编程语言开发者文档。
59
818