MONAI研究贡献指南
2024-08-20 19:15:19作者:伍希望
项目介绍
MONAI 是一个由 NVIDIA 领导并得到广泛社区支持的医疗影像 AI 开发库,专为医疗保健领域的深度学习应用程序设计。该项目旨在加速从研究到生产的转化过程,通过提供一系列高效的工具和模块,使得开发者能够便捷地构建、训练和部署医疗影像分析模型。其研究贡献分支汇聚了创新的实验、原型和最新的研究成果。
项目快速启动
要快速启动并运行 MONAI
的研究贡献部分,首先确保你已经安装了必要的依赖项,包括 Python 3.7+ 和其他 MONAI 核心库。以下是克隆项目并运行一个基本示例的步骤:
步骤1: 克隆项目
git clone https://github.com/Project-MONAI/research-contributions.git
cd research-contributions
步骤2: 安装依赖
建议在虚拟环境中操作以避免版本冲突。激活虚拟环境后,执行以下命令来安装 MONAI 及其研究贡献所需的额外包(此部分可能需要查阅具体 README 文件以获取最新安装指令)。
pip install -r requirements.txt
示例代码快速体验
这里提供一个简化的示例,展示如何加载医学影像数据并进行简单的预处理,实际项目中会有更复杂的研究级示例:
from monai.data import DataLoader, ImageDataset
from monai.transforms import Compose, LoadImaged, NormalizeIntensityd, ToTensord
# 假设你有一个数据目录路径 'data/path'
images = ['data/path/image_01.nii.gz', 'data/path/image_02.nii.gz']
labels = ['data/path/label_01.nii.gz', 'data/path/label_02.nii.gz']
dataset = ImageDataset(data={'image': images, 'label': labels})
transform = Compose([LoadImaged(keys=['image', 'label']),
NormalizeIntensityd(keys='image'),
ToTensord(keys=['image', 'label'])])
dataloader = DataLoader(dataset, batch_size=2, transform=transform)
for batch_data in dataloader:
print(batch_data["image"].shape, batch_data["label"].shape)
应用案例与最佳实践
在实际应用中,MONAI
研究贡献部分提供了多种案例,涵盖病变检测、分割任务、图像重建等多个领域。开发者可以参考这些案例来了解如何结合特定的数据集和算法实现自己的医疗影像AI解决方案。例如,利用UNet模型进行肝脏肿瘤分割是一个典型的案例,它演示了从数据预处理到模型训练再到评估的全流程。
推荐实践
- 标准化前处理:始终对输入图像应用标准化和归一化,以减少不同扫描设备间的变异。
- 模型选择与调优:基于任务选择合适的基础模型,如UNETR对于3D医学影像分割表现优异,并进行超参数调优以提高性能。
- 利用现有模块:充分利用MONAI提供的丰富转换(transforms)和工作流程管理工具,以便于实验复现和快速开发。
典型生态项目
MONAI生态系统拓展迅速,其中包括但不限于:
- MONAI Label:提供交互式的图像标注工具,便于创建高质量的标签数据。
- MONAI Deploy App SDK:允许将训练好的模型打包成容器化应用,便于在不同的医疗系统中部署。
- MONAI Workflows:高级管道组件,用于构建复杂的模型训练和推理工作流。
通过上述模块的集成,MONAI
构建了一个强大的框架,支持医疗影像AI的全周期研发,从数据准备、模型训练到最终的应用部署。深入探索这些生态项目可以大大提升医疗影像AI的研发效率和成果质量。
请注意,具体实例代码和配置可能会随项目更新而变化,务必参照项目仓库的最新文档和示例代码。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
168
2.05 K

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
92
599

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
199
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
954
563

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
71

Git4Research旨在构建一个开放、包容、协作的研究社区,让更多人能够参与到开放研究中,共同推动知识的进步。
HTML
25
4

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0