MGM项目中的LLM模型训练损失分析:Qwen2与Gemma的对比研究
2025-06-25 15:14:46作者:殷蕙予
在大型语言模型(LLM)的训练过程中,损失值(loss)是评估模型性能的重要指标之一。本文基于MGM(MiniGemini)项目中的实际训练经验,探讨了不同基座模型在预训练和指令微调阶段的损失表现,为研究者提供有价值的参考。
训练损失现象观察
在使用Qwen2-4B模型进行训练时,研究人员观察到一个有趣的现象:模型损失值稳定在1.8左右,不再继续下降。这与之前使用LLaVA架构时的经验形成对比,后者通常能达到更低的损失值(约0.8)。这种差异引发了关于不同模型架构损失表现的研究兴趣。
基座模型的损失对比
通过对Gemma模型的深入分析,我们发现:
- 在预训练阶段,Gemma模型的损失通常收敛在2.0左右
- 在指令微调阶段,损失可以进一步降低到约1.0
- Qwen-14B作为基座模型时,预训练损失约为1.6
这些数据表明,不同模型架构和规模的损失表现存在显著差异,1.8-2.0的损失值在预训练阶段属于正常范围。
技术要点解析
- 损失值的解读:损失值本身不能完全反映模型性能,需要结合下游任务表现综合评估
- 学习率调整:当训练过程不稳定时,适当调整学习率可能改善收敛性
- 模型规模影响:更大的模型(如14B)通常能获得更低的训练损失
- 训练阶段差异:预训练阶段的损失通常高于指令微调阶段
实践建议
对于遇到类似问题的研究者,我们建议:
- 不要仅凭损失值判断模型性能,应结合具体任务评估
- 对于Qwen2系列模型,1.8左右的预训练损失属于正常现象
- 可以尝试调整学习率等超参数优化训练过程
- 注意区分预训练和微调阶段的损失预期差异
通过本文的分析,我们希望帮助研究者更好地理解不同LLM模型的训练特性,为模型开发和优化提供参考依据。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8