MGM项目中的LLM模型训练损失分析:Qwen2与Gemma的对比研究
2025-06-25 17:15:17作者:殷蕙予
在大型语言模型(LLM)的训练过程中,损失值(loss)是评估模型性能的重要指标之一。本文基于MGM(MiniGemini)项目中的实际训练经验,探讨了不同基座模型在预训练和指令微调阶段的损失表现,为研究者提供有价值的参考。
训练损失现象观察
在使用Qwen2-4B模型进行训练时,研究人员观察到一个有趣的现象:模型损失值稳定在1.8左右,不再继续下降。这与之前使用LLaVA架构时的经验形成对比,后者通常能达到更低的损失值(约0.8)。这种差异引发了关于不同模型架构损失表现的研究兴趣。
基座模型的损失对比
通过对Gemma模型的深入分析,我们发现:
- 在预训练阶段,Gemma模型的损失通常收敛在2.0左右
- 在指令微调阶段,损失可以进一步降低到约1.0
- Qwen-14B作为基座模型时,预训练损失约为1.6
这些数据表明,不同模型架构和规模的损失表现存在显著差异,1.8-2.0的损失值在预训练阶段属于正常范围。
技术要点解析
- 损失值的解读:损失值本身不能完全反映模型性能,需要结合下游任务表现综合评估
- 学习率调整:当训练过程不稳定时,适当调整学习率可能改善收敛性
- 模型规模影响:更大的模型(如14B)通常能获得更低的训练损失
- 训练阶段差异:预训练阶段的损失通常高于指令微调阶段
实践建议
对于遇到类似问题的研究者,我们建议:
- 不要仅凭损失值判断模型性能,应结合具体任务评估
- 对于Qwen2系列模型,1.8左右的预训练损失属于正常现象
- 可以尝试调整学习率等超参数优化训练过程
- 注意区分预训练和微调阶段的损失预期差异
通过本文的分析,我们希望帮助研究者更好地理解不同LLM模型的训练特性,为模型开发和优化提供参考依据。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355