首页
/ Keras 3中的相似性损失函数:CircleLoss的实现与思考

Keras 3中的相似性损失函数:CircleLoss的实现与思考

2025-04-30 16:15:31作者:裘晴惠Vivianne

在深度学习领域,相似性学习(Similarity Learning)是一个重要的研究方向,它专注于学习如何度量数据样本之间的相似性。最近,Keras社区中关于在Keras 3中实现相似性损失函数的讨论引起了广泛关注,特别是关于CircleLoss的实现方案。

相似性损失函数与传统分类损失函数不同,它直接优化样本在嵌入空间中的距离关系。这类损失函数通常用于人脸识别、图像检索、推荐系统等需要度量相似度的任务。CircleLoss作为一种较新的相似性损失函数,通过自适应调整梯度,能够更有效地优化正负样本对。

在Keras 3中实现CircleLoss时,开发者提出了三种不同的技术方案:

第一种方案是直接继承Keras现有的LossFunctionWrapper。这是最直接的方式,损失函数只接收y_true和y_pred两个参数,计算局限在单个批次内。这种方式实现简单,适合大多数标准训练场景,但无法支持跨批次的正负样本挖掘。

第二种方案是引入新的MetricLossFunctionWrapper。这种设计参考了TensorFlow Similarity库中的实现,允许损失函数接收四个参数(查询嵌入、查询标签、键嵌入、键标签)。当后两个参数未提供时,默认使用前两个参数。这种方式既保持了与标准训练配置的兼容性,又为高级训练设置提供了灵活性。

第三种方案是修改损失函数本身,使其能够接收四个参数。这种方法与第二种方案类似,但不需要额外的Wrapper类。函数内部通过判断参数是否为None来自动处理标准训练和跨批次训练两种情况。

从工程实现的角度来看,第一种方案最为简单直接,适合作为Keras核心功能的初始实现。而第二和第三种方案则提供了更大的灵活性,特别是对于需要跨批次训练的高级应用场景。开发者最终选择了第一种方案作为初始实现,这既保证了功能的稳定性,也为未来的扩展留下了空间。

相似性损失函数的加入将大大增强Keras在度量学习任务中的能力。对于研究人员和工程师来说,这意味着可以在Keras框架下更方便地实现各种基于相似性的学习算法,而无需依赖额外的库。这也体现了Keras作为深度学习框架的持续演进和扩展能力。

随着CircleLoss的实现,未来可能会有更多类型的相似性损失函数被引入Keras生态系统,进一步丰富其在各种机器学习任务中的应用场景。

登录后查看全文
热门项目推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468
kernelkernel
deepin linux kernel
C
22
5
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
180
264
cjoycjoy
一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60