Keras 3中的相似性损失函数:CircleLoss的实现与思考
在深度学习领域,相似性学习(Similarity Learning)是一个重要的研究方向,它专注于学习如何度量数据样本之间的相似性。最近,Keras社区中关于在Keras 3中实现相似性损失函数的讨论引起了广泛关注,特别是关于CircleLoss的实现方案。
相似性损失函数与传统分类损失函数不同,它直接优化样本在嵌入空间中的距离关系。这类损失函数通常用于人脸识别、图像检索、推荐系统等需要度量相似度的任务。CircleLoss作为一种较新的相似性损失函数,通过自适应调整梯度,能够更有效地优化正负样本对。
在Keras 3中实现CircleLoss时,开发者提出了三种不同的技术方案:
第一种方案是直接继承Keras现有的LossFunctionWrapper。这是最直接的方式,损失函数只接收y_true和y_pred两个参数,计算局限在单个批次内。这种方式实现简单,适合大多数标准训练场景,但无法支持跨批次的正负样本挖掘。
第二种方案是引入新的MetricLossFunctionWrapper。这种设计参考了TensorFlow Similarity库中的实现,允许损失函数接收四个参数(查询嵌入、查询标签、键嵌入、键标签)。当后两个参数未提供时,默认使用前两个参数。这种方式既保持了与标准训练配置的兼容性,又为高级训练设置提供了灵活性。
第三种方案是修改损失函数本身,使其能够接收四个参数。这种方法与第二种方案类似,但不需要额外的Wrapper类。函数内部通过判断参数是否为None来自动处理标准训练和跨批次训练两种情况。
从工程实现的角度来看,第一种方案最为简单直接,适合作为Keras核心功能的初始实现。而第二和第三种方案则提供了更大的灵活性,特别是对于需要跨批次训练的高级应用场景。开发者最终选择了第一种方案作为初始实现,这既保证了功能的稳定性,也为未来的扩展留下了空间。
相似性损失函数的加入将大大增强Keras在度量学习任务中的能力。对于研究人员和工程师来说,这意味着可以在Keras框架下更方便地实现各种基于相似性的学习算法,而无需依赖额外的库。这也体现了Keras作为深度学习框架的持续演进和扩展能力。
随着CircleLoss的实现,未来可能会有更多类型的相似性损失函数被引入Keras生态系统,进一步丰富其在各种机器学习任务中的应用场景。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选








