Torchtitan项目中FP8行量化训练出现NaN损失问题的分析与解决
2025-06-19 03:12:55作者:凤尚柏Louis
问题背景
在Torchtitan项目(一个基于PyTorch的大模型训练框架)中,用户报告在使用Llama3 8B模型进行FP8行量化训练时出现了NaN(非数字)损失值的问题。该问题特别出现在使用rowwise量化方案、模型编译(torch.compile)和RMSNorm层组合的情况下。
问题现象
当用户尝试使用以下配置运行训练时:
- 模型:Llama3 8B
- 量化:FP8行量化(rowwise)
- 训练配置:启用torch.compile
- 归一化层:RMSNorm
训练过程中会出现NaN损失值,导致训练失败。值得注意的是,同样的配置在几周前可以正常工作。
技术分析
FP8量化简介
FP8(8位浮点数)是一种新兴的深度学习量化格式,它能在保持模型精度的同时显著减少内存占用和计算开销。行量化(rowwise)是一种特殊的量化策略,它为矩阵的每一行使用独立的缩放因子,相比全局量化能更好地保留精度。
问题根源追踪
经过深入排查,发现问题源于PyTorch核心代码中的一个特定提交。这个提交修改了RMSNorm的实现,与torch.compile和FP8行量化产生了不良交互。具体表现为:
- 在FSDP(完全分片数据并行)的
foreach_all_gather_copy_out函数中出现了NaN值 - 问题仅出现在RMSNorm层,替换为LayerNorm后问题消失
- 问题具有非确定性,有时表现为NaN,有时表现为CUDA内核错误
问题复现范围
通过二分法排查PyTorch提交历史,确定了问题引入的具体版本范围:
- 正常工作的最后版本:PyTorch 2.6.0(2025年1月29日发布)
- 问题首次出现的提交:2025年3月8日的某个特定修改
临时解决方案
在等待PyTorch核心团队修复根本问题的同时,Torchtitan项目提供了两种临时解决方案:
- 环境变量法:设置
TORCHINDUCTOR_EMULATE_PRECISION_CASTS=1,强制模拟精度转换 - 代码修改法:将RMSNorm替换为LayerNorm(已在Torchtitan #1108中实现)
技术启示
- 量化训练的敏感性:低精度训练对数值稳定性要求极高,任何微小的数值处理不当都可能导致NaN
- 编译优化的复杂性:torch.compile的优化可能暴露底层数值计算问题
- 版本兼容性:深度学习框架的快速迭代可能引入意外的回归问题
长期解决方案
PyTorch核心团队正在处理这个问题的根本修复,涉及以下几个方面:
- 改进FP8在FSDP中的处理逻辑
- 增强RMSNorm的数值稳定性
- 完善torch.compile对量化操作的支持
最佳实践建议
对于使用Torchtitan进行FP8量化训练的用户:
- 密切关注PyTorch版本更新
- 在启用新特性时进行充分的稳定性测试
- 保持对训练过程的监控,特别是损失值和梯度变化
- 考虑使用
TORCHINDUCTOR_EMULATE_PRECISION_CASTS=1作为预防措施
这个问题展示了深度学习系统底层优化与高层抽象之间复杂的交互关系,也提醒我们在追求性能优化的同时需要保持对数值稳定性的高度关注。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
288
340
暂无简介
Dart
729
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
449
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
245
105
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
453
181
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
706