Torchtitan项目中FP8行量化训练出现NaN损失问题的分析与解决
2025-06-19 01:40:47作者:凤尚柏Louis
问题背景
在Torchtitan项目(一个基于PyTorch的大模型训练框架)中,用户报告在使用Llama3 8B模型进行FP8行量化训练时出现了NaN(非数字)损失值的问题。该问题特别出现在使用rowwise量化方案、模型编译(torch.compile)和RMSNorm层组合的情况下。
问题现象
当用户尝试使用以下配置运行训练时:
- 模型:Llama3 8B
- 量化:FP8行量化(rowwise)
- 训练配置:启用torch.compile
- 归一化层:RMSNorm
训练过程中会出现NaN损失值,导致训练失败。值得注意的是,同样的配置在几周前可以正常工作。
技术分析
FP8量化简介
FP8(8位浮点数)是一种新兴的深度学习量化格式,它能在保持模型精度的同时显著减少内存占用和计算开销。行量化(rowwise)是一种特殊的量化策略,它为矩阵的每一行使用独立的缩放因子,相比全局量化能更好地保留精度。
问题根源追踪
经过深入排查,发现问题源于PyTorch核心代码中的一个特定提交。这个提交修改了RMSNorm的实现,与torch.compile和FP8行量化产生了不良交互。具体表现为:
- 在FSDP(完全分片数据并行)的
foreach_all_gather_copy_out函数中出现了NaN值 - 问题仅出现在RMSNorm层,替换为LayerNorm后问题消失
- 问题具有非确定性,有时表现为NaN,有时表现为CUDA内核错误
问题复现范围
通过二分法排查PyTorch提交历史,确定了问题引入的具体版本范围:
- 正常工作的最后版本:PyTorch 2.6.0(2025年1月29日发布)
- 问题首次出现的提交:2025年3月8日的某个特定修改
临时解决方案
在等待PyTorch核心团队修复根本问题的同时,Torchtitan项目提供了两种临时解决方案:
- 环境变量法:设置
TORCHINDUCTOR_EMULATE_PRECISION_CASTS=1,强制模拟精度转换 - 代码修改法:将RMSNorm替换为LayerNorm(已在Torchtitan #1108中实现)
技术启示
- 量化训练的敏感性:低精度训练对数值稳定性要求极高,任何微小的数值处理不当都可能导致NaN
- 编译优化的复杂性:torch.compile的优化可能暴露底层数值计算问题
- 版本兼容性:深度学习框架的快速迭代可能引入意外的回归问题
长期解决方案
PyTorch核心团队正在处理这个问题的根本修复,涉及以下几个方面:
- 改进FP8在FSDP中的处理逻辑
- 增强RMSNorm的数值稳定性
- 完善torch.compile对量化操作的支持
最佳实践建议
对于使用Torchtitan进行FP8量化训练的用户:
- 密切关注PyTorch版本更新
- 在启用新特性时进行充分的稳定性测试
- 保持对训练过程的监控,特别是损失值和梯度变化
- 考虑使用
TORCHINDUCTOR_EMULATE_PRECISION_CASTS=1作为预防措施
这个问题展示了深度学习系统底层优化与高层抽象之间复杂的交互关系,也提醒我们在追求性能优化的同时需要保持对数值稳定性的高度关注。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
407
3.14 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
673
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
658
React Native鸿蒙化仓库
JavaScript
262
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868