Lighthouse项目状态缓存未命中问题分析与优化方案
问题背景
Lighthouse作为区块链共识客户端,在v7.0.0版本发布后出现了状态缓存未命中率上升的问题。状态缓存是提升节点性能的关键组件,缓存未命中会导致节点需要从磁盘加载状态,增加I/O开销,特别是在epoch边界时期会对节点性能产生显著影响。
问题分类与分析
通过对日志和调用栈的分析,我们发现缓存未命中主要分为四类情况:
-
非规范链末端状态加载:在修剪过程中对非规范链末端状态的加载。这个问题已在unstable分支中通过相关PR修复。
-
归档节点的规范状态加载:归档节点在迁移过程中需要加载规范状态。这些状态加载发生在热冷存储迁移过程中,是归档节点特有的行为。
-
陈旧数据验证的状态加载:验证过时数据时需要加载相应状态。
-
低质量证明验证的状态加载:在使用
--subscribe-all-subnets
参数的节点上更常见,验证低质量证明时需要加载状态。
尝试过的解决方案
团队已经尝试了多种优化方案:
-
调整缓存大小:将默认缓存大小从128降至64,但发现仍会导致上述所有情况下的频繁缓存未命中。
-
改进修剪算法:将修剪策略从MRU(最近最多使用)优先改为LRU(最近最少使用)优先,但效果有限。
-
组合优化:同时调整缓存大小和改进修剪算法,仍未能完全解决问题。
最终解决方案
经过全面评估,决定采取以下措施:
-
恢复默认缓存大小:将默认状态缓存大小恢复为128,这能有效减少缓存未命中情况。
-
保留LRU优化:虽然单独效果有限,但与缓存大小调整结合使用能带来一定改善。
-
非最终性处理建议:虽然增大缓存会略微增加非最终性情况下的处理难度,但团队确认在必要时可以通过降低缓存大小来应对,并将在相关文档中提供明确指导。
长期优化方向
除了短期修复外,团队还规划了更长期的优化方案:
-
基于大小的修剪策略:更智能地管理缓存空间。
-
内部重组优化:通过相关PR实现更高效的缓存管理机制,待基础依赖更新后即可合并到unstable分支。
这些优化将进一步提升Lighthouse在非最终性情况下的处理能力,同时保持高性能的状态管理。
总结
Lighthouse团队通过系统性的问题分析和多维度验证,找到了状态缓存未命中问题的有效解决方案。短期通过调整缓存大小和修剪策略解决问题,长期则规划了更先进的缓存管理机制,体现了对节点性能和稳定性的持续优化承诺。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++036Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0283Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









