Spring Framework中虚拟线程在存储过程调用时的优化方案
虚拟线程与同步阻塞问题
在Java 21中引入的虚拟线程(Virtual Threads)为高并发应用带来了显著的性能提升,但在实际应用中,我们仍然需要注意避免虚拟线程被"钉住"(pinned)的情况。钉住现象会使得轻量级的虚拟线程退化为平台线程,从而失去其调度优势。
Spring Framework 3.3.2版本中,在AbstractJdbcCall.compile()方法实现中使用了synchronized关键字进行方法级别的同步。这种同步方式在虚拟线程环境下会导致线程被钉住,进而可能引发性能下降甚至死锁问题。
问题分析
当使用虚拟线程并启用-Djdk.tracePinnedThreads=short参数时,可以观察到如下日志输出:
Thread[#179,ForkJoinPool-1-worker-28,5,CarrierThreads]
org.springframework.jdbc.core.simple.AbstractJdbcCall.compile(AbstractJdbcCall.java:298) <== monitors:1
这表明虚拟线程在执行compile()方法时被钉住了,原因是该方法使用了synchronized关键字。在虚拟线程模型中,任何获取监视器锁(monitor lock)的操作都会导致当前虚拟线程被绑定到承载线程(Carrier Thread)上,直到锁被释放。
优化方案
针对这一问题,可以考虑以下几种优化方案:
-
使用ReentrantLock替代synchronized: Java并发包中的
ReentrantLock不会导致虚拟线程被钉住,是更现代的同步机制选择。 -
CAS(Compare-And-Swap)无锁编程: 使用原子变量和CAS操作可以完全避免锁的使用,实现真正的无锁编程。
-
双重检查锁定模式优化: 结合volatile变量和局部同步块,减少同步范围。
实现建议
对于AbstractJdbcCall.compile()方法,可以重构为以下形式:
private final AtomicBoolean compiledFlag = new AtomicBoolean(false);
private final Lock compileLock = new ReentrantLock();
public final void compile() throws InvalidDataAccessApiUsageException {
if (!compiledFlag.get()) {
compileLock.lock();
try {
if (!compiledFlag.get()) {
// 原有编译逻辑
compiledFlag.set(true);
}
} finally {
compileLock.unlock();
}
}
}
这种实现方式既保证了线程安全,又避免了虚拟线程被钉住的问题。
性能考量
在实际应用中,存储过程编译通常是一次性操作,后续调用会直接使用已编译的结果。因此,使用更轻量级的同步机制可以带来以下优势:
- 减少虚拟线程被钉住的概率
- 提高高并发场景下的吞吐量
- 避免潜在的死锁风险
- 保持虚拟线程的轻量级特性
结论
随着Java虚拟线程的普及,Spring Framework中的同步机制也需要相应地进行优化。通过将传统的synchronized替换为更现代的并发控制机制,可以充分发挥虚拟线程的优势,为高并发数据库操作提供更好的性能表现。这种优化对于使用存储过程频繁的企业级应用尤为重要。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00