Spring Framework中虚拟线程在存储过程调用时的优化方案
虚拟线程与同步阻塞问题
在Java 21中引入的虚拟线程(Virtual Threads)为高并发应用带来了显著的性能提升,但在实际应用中,我们仍然需要注意避免虚拟线程被"钉住"(pinned)的情况。钉住现象会使得轻量级的虚拟线程退化为平台线程,从而失去其调度优势。
Spring Framework 3.3.2版本中,在AbstractJdbcCall.compile()方法实现中使用了synchronized关键字进行方法级别的同步。这种同步方式在虚拟线程环境下会导致线程被钉住,进而可能引发性能下降甚至死锁问题。
问题分析
当使用虚拟线程并启用-Djdk.tracePinnedThreads=short参数时,可以观察到如下日志输出:
Thread[#179,ForkJoinPool-1-worker-28,5,CarrierThreads]
org.springframework.jdbc.core.simple.AbstractJdbcCall.compile(AbstractJdbcCall.java:298) <== monitors:1
这表明虚拟线程在执行compile()方法时被钉住了,原因是该方法使用了synchronized关键字。在虚拟线程模型中,任何获取监视器锁(monitor lock)的操作都会导致当前虚拟线程被绑定到承载线程(Carrier Thread)上,直到锁被释放。
优化方案
针对这一问题,可以考虑以下几种优化方案:
-
使用ReentrantLock替代synchronized: Java并发包中的
ReentrantLock不会导致虚拟线程被钉住,是更现代的同步机制选择。 -
CAS(Compare-And-Swap)无锁编程: 使用原子变量和CAS操作可以完全避免锁的使用,实现真正的无锁编程。
-
双重检查锁定模式优化: 结合volatile变量和局部同步块,减少同步范围。
实现建议
对于AbstractJdbcCall.compile()方法,可以重构为以下形式:
private final AtomicBoolean compiledFlag = new AtomicBoolean(false);
private final Lock compileLock = new ReentrantLock();
public final void compile() throws InvalidDataAccessApiUsageException {
if (!compiledFlag.get()) {
compileLock.lock();
try {
if (!compiledFlag.get()) {
// 原有编译逻辑
compiledFlag.set(true);
}
} finally {
compileLock.unlock();
}
}
}
这种实现方式既保证了线程安全,又避免了虚拟线程被钉住的问题。
性能考量
在实际应用中,存储过程编译通常是一次性操作,后续调用会直接使用已编译的结果。因此,使用更轻量级的同步机制可以带来以下优势:
- 减少虚拟线程被钉住的概率
- 提高高并发场景下的吞吐量
- 避免潜在的死锁风险
- 保持虚拟线程的轻量级特性
结论
随着Java虚拟线程的普及,Spring Framework中的同步机制也需要相应地进行优化。通过将传统的synchronized替换为更现代的并发控制机制,可以充分发挥虚拟线程的优势,为高并发数据库操作提供更好的性能表现。这种优化对于使用存储过程频繁的企业级应用尤为重要。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C041
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00