Orpheus-TTS项目中的预训练数据结构解析
2025-06-13 18:52:07作者:翟萌耘Ralph
概述
在Orpheus-TTS语音合成项目中,预训练数据的结构设计是其核心技术之一。本文将深入解析该项目的两种关键数据集格式:text_QA_dataset和TTS_dataset,帮助开发者理解如何正确准备训练数据。
特殊标记定义
Orpheus-TTS使用了一系列特殊标记来构建训练数据:
tokeniser_length = 128256
start_of_text = 128000
end_of_text = 128009
start_of_speech = tokeniser_length + 1 # 128257
end_of_speech = tokeniser_length + 2 # 128258
start_of_human = tokeniser_length + 3 # 128259
end_of_human = tokeniser_length + 4 # 128260
start_of_ai = tokeniser_length + 5 # 128261
end_of_ai = tokeniser_length + 6 # 128262
pad_token = tokeniser_length + 7 # 128263
audio_tokens_start = tokeniser_length + 10 # 128266
这些特殊标记构成了数据序列的结构框架,确保了模型能够区分不同类型的内容。
text_QA_dataset数据结构
text_QA_dataset专门用于纯文本问答对的训练,不包含任何音频数据。其结构设计如下:
-
人类提问部分:
- start_of_human标记开始
- start_of_text标记文本开始
- 问题文本的token序列
- end_of_text标记文本结束
- end_of_human标记提问结束
-
AI回答部分:
- start_of_ai标记开始
- start_of_text标记文本开始
- 回答文本的token序列
- end_of_text标记文本结束
- end_of_ai标记回答结束
示例token序列(简化版):
[128259, 128000, 2001, 2002, 2003, 2004, 2005, 128009, 128260,
128261, 128000, 3001, 3002, 3003, 3004, 3005, 3006, 128009, 128262]
在实际预训练中,多个这样的问答对会被连接起来,填充到固定长度(如8192个token)以提高训练效率。
TTS_dataset数据结构
TTS_dataset用于文本到语音的转换训练,包含文本及其对应的语音编码。其结构更为复杂:
-
人类输入部分:
- start_of_human标记开始
- start_of_text标记文本开始
- 输入文本的token序列
- end_of_text标记文本结束
- end_of_human标记输入结束
-
AI语音输出部分:
- start_of_ai标记开始
- start_of_speech标记语音开始
- 语音编码序列
- end_of_speech标记语音结束
- end_of_ai标记输出结束
完整结构示例:
start_of_human → start_of_text → 文本token → end_of_text → end_of_human →
start_of_ai → start_of_speech → 语音token → end_of_speech → end_of_ai
数据处理实践建议
-
对于纯文本问答数据:
- 确保问答对的质量和相关性
- 保持合理的序列长度
- 使用统一的tokenizer处理文本
-
对于TTS数据:
- 确保文本和语音的对齐准确
- 语音编码需要经过专门的音频处理流程
- 注意控制音频片段的长度
-
通用建议:
- 实现批量处理提高效率
- 添加适当的填充(padding)处理
- 建立数据质量检查机制
总结
Orpheus-TTS通过精心设计的数据结构,实现了文本问答和语音合成的统一训练框架。理解这些数据结构对于正确准备训练数据、调试模型以及扩展功能都至关重要。开发者应根据实际需求,合理组织数据,遵循项目定义的特殊标记规则,才能充分发挥模型的性能潜力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110