Seurat项目中SCTransform后计算线粒体基因百分比的注意事项
2025-07-02 06:29:52作者:何将鹤
问题背景
在使用Seurat进行单细胞数据分析时,计算线粒体基因百分比(percent.mt)是一个常见的质量控制步骤。然而,在使用SCTransform方法进行数据归一化后,部分用户可能会遇到计算出的percent.mt值超过100%的异常情况。本文将深入分析这一现象的原因,并提供正确的操作流程。
问题现象
当用户执行以下操作流程时:
- 合并多个Seurat对象
- 使用SCTransform进行归一化
- 调用PrepSCTFindMarkers准备标记基因分析
- 在SCT assay上计算percent.mt
部分细胞会出现percent.mt值超过100%的情况,这显然不符合生物学常识。
原因分析
经过深入调查,发现问题的根源在于PrepSCTFindMarkers函数会更新SCT assay中的counts值,但不会同步更新meta.data中的nCount_SCT值。这种不一致性导致了百分比计算的异常。
具体来说:
- PercentageFeatureSet函数计算percent.mt时,使用公式:
(线粒体基因counts总和)/(nCount_SCT)*100 - PrepSCTFindMarkers更新了counts但未更新nCount_SCT
- 当counts增加而nCount_SCT未变时,计算结果就可能超过100%
解决方案
正确的操作顺序应该是:
- 合并Seurat对象
- 执行SCTransform归一化
- 在SCT assay上计算percent.mt
- 最后调用PrepSCTFindMarkers准备标记基因分析
代码示例:
# 正确操作顺序
s_merged <- merge(x = merge_list[[1]], y = merge_list[2:3]) %>%
SCTransform(assay = "RNA", variable.features.n = 3000)
s_merged[["percent.mt"]] <- PercentageFeatureSet(s_merged,
pattern = "^mt-",
assay = "SCT")
s_merged <- PrepSCTFindMarkers(object = s_merged)
最佳实践建议
-
assay选择:虽然可以在SCT assay上计算percent.mt,但更推荐使用原始RNA assay进行计算,这样结果更稳定可靠。
-
操作顺序:在Seurat分析流程中,质量指标计算应尽可能早进行,特别是在任何可能改变counts值的操作之前。
-
数据验证:计算percent.mt后,建议检查最大值是否合理,并绘制分布图观察异常值。
-
版本控制:不同版本的Seurat可能在细节处理上有差异,建议记录使用的软件版本。
总结
在单细胞数据分析中,理解每个函数对数据结构的改变至关重要。SCTransform和PrepSCTFindMarkers等高级函数虽然强大,但也可能引入一些非直观的副作用。通过遵循正确的操作顺序和理解底层数据变化,可以避免percent.mt计算异常等问题,确保分析结果的可靠性。
对于新手用户,建议在进行复杂分析前,先在小数据集上测试关键步骤,验证中间结果的合理性,再应用到完整分析流程中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C077
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
Ascend Extension for PyTorch
Python
269
309
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
188
77
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
421
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692