Seurat项目中SCTransform后计算线粒体基因百分比的注意事项
2025-07-02 06:29:52作者:何将鹤
问题背景
在使用Seurat进行单细胞数据分析时,计算线粒体基因百分比(percent.mt)是一个常见的质量控制步骤。然而,在使用SCTransform方法进行数据归一化后,部分用户可能会遇到计算出的percent.mt值超过100%的异常情况。本文将深入分析这一现象的原因,并提供正确的操作流程。
问题现象
当用户执行以下操作流程时:
- 合并多个Seurat对象
- 使用SCTransform进行归一化
- 调用PrepSCTFindMarkers准备标记基因分析
- 在SCT assay上计算percent.mt
部分细胞会出现percent.mt值超过100%的情况,这显然不符合生物学常识。
原因分析
经过深入调查,发现问题的根源在于PrepSCTFindMarkers函数会更新SCT assay中的counts值,但不会同步更新meta.data中的nCount_SCT值。这种不一致性导致了百分比计算的异常。
具体来说:
- PercentageFeatureSet函数计算percent.mt时,使用公式:
(线粒体基因counts总和)/(nCount_SCT)*100 - PrepSCTFindMarkers更新了counts但未更新nCount_SCT
- 当counts增加而nCount_SCT未变时,计算结果就可能超过100%
解决方案
正确的操作顺序应该是:
- 合并Seurat对象
- 执行SCTransform归一化
- 在SCT assay上计算percent.mt
- 最后调用PrepSCTFindMarkers准备标记基因分析
代码示例:
# 正确操作顺序
s_merged <- merge(x = merge_list[[1]], y = merge_list[2:3]) %>%
SCTransform(assay = "RNA", variable.features.n = 3000)
s_merged[["percent.mt"]] <- PercentageFeatureSet(s_merged,
pattern = "^mt-",
assay = "SCT")
s_merged <- PrepSCTFindMarkers(object = s_merged)
最佳实践建议
-
assay选择:虽然可以在SCT assay上计算percent.mt,但更推荐使用原始RNA assay进行计算,这样结果更稳定可靠。
-
操作顺序:在Seurat分析流程中,质量指标计算应尽可能早进行,特别是在任何可能改变counts值的操作之前。
-
数据验证:计算percent.mt后,建议检查最大值是否合理,并绘制分布图观察异常值。
-
版本控制:不同版本的Seurat可能在细节处理上有差异,建议记录使用的软件版本。
总结
在单细胞数据分析中,理解每个函数对数据结构的改变至关重要。SCTransform和PrepSCTFindMarkers等高级函数虽然强大,但也可能引入一些非直观的副作用。通过遵循正确的操作顺序和理解底层数据变化,可以避免percent.mt计算异常等问题,确保分析结果的可靠性。
对于新手用户,建议在进行复杂分析前,先在小数据集上测试关键步骤,验证中间结果的合理性,再应用到完整分析流程中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
89
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
337
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
437
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19