Seurat项目中SCTransform后计算线粒体基因百分比的注意事项
2025-07-02 03:16:32作者:何将鹤
问题背景
在使用Seurat进行单细胞数据分析时,计算线粒体基因百分比(percent.mt)是一个常见的质量控制步骤。然而,在使用SCTransform方法进行数据归一化后,部分用户可能会遇到计算出的percent.mt值超过100%的异常情况。本文将深入分析这一现象的原因,并提供正确的操作流程。
问题现象
当用户执行以下操作流程时:
- 合并多个Seurat对象
- 使用SCTransform进行归一化
- 调用PrepSCTFindMarkers准备标记基因分析
- 在SCT assay上计算percent.mt
部分细胞会出现percent.mt值超过100%的情况,这显然不符合生物学常识。
原因分析
经过深入调查,发现问题的根源在于PrepSCTFindMarkers函数会更新SCT assay中的counts值,但不会同步更新meta.data中的nCount_SCT值。这种不一致性导致了百分比计算的异常。
具体来说:
- PercentageFeatureSet函数计算percent.mt时,使用公式:
(线粒体基因counts总和)/(nCount_SCT)*100
- PrepSCTFindMarkers更新了counts但未更新nCount_SCT
- 当counts增加而nCount_SCT未变时,计算结果就可能超过100%
解决方案
正确的操作顺序应该是:
- 合并Seurat对象
- 执行SCTransform归一化
- 在SCT assay上计算percent.mt
- 最后调用PrepSCTFindMarkers准备标记基因分析
代码示例:
# 正确操作顺序
s_merged <- merge(x = merge_list[[1]], y = merge_list[2:3]) %>%
SCTransform(assay = "RNA", variable.features.n = 3000)
s_merged[["percent.mt"]] <- PercentageFeatureSet(s_merged,
pattern = "^mt-",
assay = "SCT")
s_merged <- PrepSCTFindMarkers(object = s_merged)
最佳实践建议
-
assay选择:虽然可以在SCT assay上计算percent.mt,但更推荐使用原始RNA assay进行计算,这样结果更稳定可靠。
-
操作顺序:在Seurat分析流程中,质量指标计算应尽可能早进行,特别是在任何可能改变counts值的操作之前。
-
数据验证:计算percent.mt后,建议检查最大值是否合理,并绘制分布图观察异常值。
-
版本控制:不同版本的Seurat可能在细节处理上有差异,建议记录使用的软件版本。
总结
在单细胞数据分析中,理解每个函数对数据结构的改变至关重要。SCTransform和PrepSCTFindMarkers等高级函数虽然强大,但也可能引入一些非直观的副作用。通过遵循正确的操作顺序和理解底层数据变化,可以避免percent.mt计算异常等问题,确保分析结果的可靠性。
对于新手用户,建议在进行复杂分析前,先在小数据集上测试关键步骤,验证中间结果的合理性,再应用到完整分析流程中。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K