Seurat项目中SCTransform后计算线粒体基因百分比的注意事项
2025-07-02 20:47:57作者:何将鹤
问题背景
在使用Seurat进行单细胞数据分析时,计算线粒体基因百分比(percent.mt)是一个常见的质量控制步骤。然而,在使用SCTransform方法进行数据归一化后,部分用户可能会遇到计算出的percent.mt值超过100%的异常情况。本文将深入分析这一现象的原因,并提供正确的操作流程。
问题现象
当用户执行以下操作流程时:
- 合并多个Seurat对象
- 使用SCTransform进行归一化
- 调用PrepSCTFindMarkers准备标记基因分析
- 在SCT assay上计算percent.mt
部分细胞会出现percent.mt值超过100%的情况,这显然不符合生物学常识。
原因分析
经过深入调查,发现问题的根源在于PrepSCTFindMarkers函数会更新SCT assay中的counts值,但不会同步更新meta.data中的nCount_SCT值。这种不一致性导致了百分比计算的异常。
具体来说:
- PercentageFeatureSet函数计算percent.mt时,使用公式:
(线粒体基因counts总和)/(nCount_SCT)*100 - PrepSCTFindMarkers更新了counts但未更新nCount_SCT
- 当counts增加而nCount_SCT未变时,计算结果就可能超过100%
解决方案
正确的操作顺序应该是:
- 合并Seurat对象
- 执行SCTransform归一化
- 在SCT assay上计算percent.mt
- 最后调用PrepSCTFindMarkers准备标记基因分析
代码示例:
# 正确操作顺序
s_merged <- merge(x = merge_list[[1]], y = merge_list[2:3]) %>%
SCTransform(assay = "RNA", variable.features.n = 3000)
s_merged[["percent.mt"]] <- PercentageFeatureSet(s_merged,
pattern = "^mt-",
assay = "SCT")
s_merged <- PrepSCTFindMarkers(object = s_merged)
最佳实践建议
-
assay选择:虽然可以在SCT assay上计算percent.mt,但更推荐使用原始RNA assay进行计算,这样结果更稳定可靠。
-
操作顺序:在Seurat分析流程中,质量指标计算应尽可能早进行,特别是在任何可能改变counts值的操作之前。
-
数据验证:计算percent.mt后,建议检查最大值是否合理,并绘制分布图观察异常值。
-
版本控制:不同版本的Seurat可能在细节处理上有差异,建议记录使用的软件版本。
总结
在单细胞数据分析中,理解每个函数对数据结构的改变至关重要。SCTransform和PrepSCTFindMarkers等高级函数虽然强大,但也可能引入一些非直观的副作用。通过遵循正确的操作顺序和理解底层数据变化,可以避免percent.mt计算异常等问题,确保分析结果的可靠性。
对于新手用户,建议在进行复杂分析前,先在小数据集上测试关键步骤,验证中间结果的合理性,再应用到完整分析流程中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248