首页
/ async-profiler 分配性能分析中的原生帧过滤优化

async-profiler 分配性能分析中的原生帧过滤优化

2025-05-28 00:02:13作者:段琳惟

在 Java 应用程序性能分析中,async-profiler 是一个强大的工具,它能够捕获各种性能事件,包括对象分配情况。最近,async-profiler 团队对其分配分析功能进行了重要优化,特别是在处理原生帧(native frames)方面,这一改进显著提升了分析结果的清晰度和实用性。

原生帧在分配分析中的重要性

在传统的分配分析中,我们通常只关注 Java 方法调用栈。然而,实际情况是,对象分配不仅发生在 Java 代码中,也可能发生在 JVM 运行时内部。例如:

  1. JVM 内部数据结构分配
  2. JNI 调用中的对象创建
  3. 系统库中的内存分配

忽略这些原生帧会导致分析结果不完整,无法全面理解内存分配的真实情况。因此,async-profiler 决定默认启用原生栈追踪功能,以提供更全面的分配视图。

原生帧带来的噪声问题

虽然原生帧提供了更完整的信息,但也带来了新的挑战。在启用原生栈追踪后,分析结果中会出现大量与 profiler 自身和 JVM 内部实现相关的帧,例如:

  1. async-profiler 自身的采样逻辑帧
  2. JVM 内存分配路径中的通用帧
  3. 锁竞争事件中的系统调用帧

这些帧虽然技术上正确,但对于分析 Java 应用程序的实际内存分配模式几乎没有帮助,反而会"污染"火焰图,使其难以阅读和理解。

优化解决方案

async-profiler 采用了三个关键策略来解决这个问题:

  1. 默认启用原生栈追踪:不再需要手动添加 cstack 选项,分配分析现在会自动捕获原生帧。

  2. 智能过滤无用帧:系统会自动识别并移除以下类型的帧:

    • 属于 JVM 通用分配路径的帧
    • async-profiler 自身的采样逻辑帧
    • 锁竞争事件中的系统调用帧
  3. 保留有意义的原生帧:只有当原生帧真正有助于区分 JVM 内部分配和 Java 代码分配时,才会被保留在结果中。

优化效果对比

优化前的火焰图中,大量黄色标记的原生帧占据了显著位置,这些帧对理解应用程序的内存分配模式几乎没有帮助。而优化后的火焰图则更加清晰,只保留了真正有意义的原生帧,使得分析人员能够快速识别出内存分配的热点。

技术实现要点

这一优化的实现涉及对 async-profiler 采样逻辑的改进,主要包括:

  1. 维护一个已知"噪声"帧的模式列表
  2. 在栈追踪收集阶段进行实时过滤
  3. 确保过滤不会影响性能数据的准确性
  4. 保留足够的信息以区分不同类型的分配来源

对性能分析的影响

这一改进使得分配分析更加实用:

  1. 开发者不再需要手动配置即可获得包含原生帧的分析结果
  2. 火焰图更加清晰,减少了分析人员的认知负担
  3. 能够更准确地识别 JVM 内部分配与应用程序分配的比例
  4. 特别有助于诊断由本地代码或 JNI 调用引起的内存问题

结论

async-profiler 对分配分析中原生帧处理的优化,体现了工具开发者对实用性和准确性的平衡考量。这一改进使得性能分析人员能够更高效地识别和理解内存分配模式,特别是在复杂的混合 Java/本地代码环境中。对于任何关心应用程序内存性能的开发者来说,升级到包含此优化的 async-profiler 版本都是值得推荐的做法。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.92 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8