async-profiler 分配性能分析中的原生帧过滤优化
在 Java 应用程序性能分析中,async-profiler 是一个强大的工具,它能够捕获各种性能事件,包括对象分配情况。最近,async-profiler 团队对其分配分析功能进行了重要优化,特别是在处理原生帧(native frames)方面,这一改进显著提升了分析结果的清晰度和实用性。
原生帧在分配分析中的重要性
在传统的分配分析中,我们通常只关注 Java 方法调用栈。然而,实际情况是,对象分配不仅发生在 Java 代码中,也可能发生在 JVM 运行时内部。例如:
- JVM 内部数据结构分配
- JNI 调用中的对象创建
- 系统库中的内存分配
忽略这些原生帧会导致分析结果不完整,无法全面理解内存分配的真实情况。因此,async-profiler 决定默认启用原生栈追踪功能,以提供更全面的分配视图。
原生帧带来的噪声问题
虽然原生帧提供了更完整的信息,但也带来了新的挑战。在启用原生栈追踪后,分析结果中会出现大量与 profiler 自身和 JVM 内部实现相关的帧,例如:
- async-profiler 自身的采样逻辑帧
- JVM 内存分配路径中的通用帧
- 锁竞争事件中的系统调用帧
这些帧虽然技术上正确,但对于分析 Java 应用程序的实际内存分配模式几乎没有帮助,反而会"污染"火焰图,使其难以阅读和理解。
优化解决方案
async-profiler 采用了三个关键策略来解决这个问题:
-
默认启用原生栈追踪:不再需要手动添加
cstack
选项,分配分析现在会自动捕获原生帧。 -
智能过滤无用帧:系统会自动识别并移除以下类型的帧:
- 属于 JVM 通用分配路径的帧
- async-profiler 自身的采样逻辑帧
- 锁竞争事件中的系统调用帧
-
保留有意义的原生帧:只有当原生帧真正有助于区分 JVM 内部分配和 Java 代码分配时,才会被保留在结果中。
优化效果对比
优化前的火焰图中,大量黄色标记的原生帧占据了显著位置,这些帧对理解应用程序的内存分配模式几乎没有帮助。而优化后的火焰图则更加清晰,只保留了真正有意义的原生帧,使得分析人员能够快速识别出内存分配的热点。
技术实现要点
这一优化的实现涉及对 async-profiler 采样逻辑的改进,主要包括:
- 维护一个已知"噪声"帧的模式列表
- 在栈追踪收集阶段进行实时过滤
- 确保过滤不会影响性能数据的准确性
- 保留足够的信息以区分不同类型的分配来源
对性能分析的影响
这一改进使得分配分析更加实用:
- 开发者不再需要手动配置即可获得包含原生帧的分析结果
- 火焰图更加清晰,减少了分析人员的认知负担
- 能够更准确地识别 JVM 内部分配与应用程序分配的比例
- 特别有助于诊断由本地代码或 JNI 调用引起的内存问题
结论
async-profiler 对分配分析中原生帧处理的优化,体现了工具开发者对实用性和准确性的平衡考量。这一改进使得性能分析人员能够更高效地识别和理解内存分配模式,特别是在复杂的混合 Java/本地代码环境中。对于任何关心应用程序内存性能的开发者来说,升级到包含此优化的 async-profiler 版本都是值得推荐的做法。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









