使用Twikit库高效获取Twitter用户点赞推文的技术实践
2025-06-30 03:04:50作者:沈韬淼Beryl
前言
在社交媒体数据分析领域,获取Twitter用户的点赞推文是一项常见需求。本文将详细介绍如何使用Python的Twikit库来实现这一功能,并分享一些实践中的经验技巧。
环境准备
首先需要安装Twikit库,这是一个功能强大的Twitter API客户端库。建议使用Python 3.7及以上版本。
pip install twikit
基本认证流程
Twikit库使用Twitter账号进行认证,支持cookie保存机制,避免频繁登录:
from twikit import Client
import os
client = Client('en-US')
# 检查是否存在已保存的cookie
if os.path.exists('cookies.json'):
client.load_cookies(path='cookies.json')
else:
# 首次登录并保存cookie
client.login(
auth_info_1='用户名',
password='密码'
)
client.save_cookies('cookies.json')
获取点赞推文的核心方法
Twitter API默认只返回最近的100条点赞推文,但通过分页机制可以获取更多数据:
user = client.get_user_by_screen_name('目标用户名')
limit = 500 # 设置要获取的推文数量上限
tweets_to_store = []
tweets = user.get_tweets('Likes', count=500) # 初始化获取
while len(tweets_to_store) < limit and len(tweets) > 0:
# 处理当前批次的推文
for tweet in tweets:
tweets_to_store.append({
'created_at': tweet.created_at,
'favorite_count': tweet.favorite_count,
'full_text': tweet.full_text
})
if len(tweets_to_store) >= limit:
break
# 尝试获取下一页数据
try:
tweets = tweets.next()
except:
break
数据处理与存储
获取到的数据可以方便地转换为DataFrame并保存为CSV文件:
import pandas as pd
df = pd.DataFrame(tweets_to_store)
df.to_csv('liked_tweets.csv', index=False)
注意事项
- 隐私限制:Twitter已将点赞设为私密内容,此方法可能不再适用于非本人账号
- 速率限制:虽然本方法未触发速率限制,但建议控制请求频率
- 数据完整性:分页获取时可能因网络问题导致中断,建议添加重试机制
- 数据时效性:获取的是实时数据,历史数据可能不完整
结语
通过Twikit库,我们可以高效地获取Twitter用户的点赞推文数据。虽然目前Twitter对点赞内容的访问权限有所限制,但这一技术思路仍适用于其他类型的推文获取场景。在实际应用中,建议结合具体需求调整代码逻辑,并遵守平台的使用条款。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
213
2.21 K

暂无简介
Dart
521
115

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

Ascend Extension for PyTorch
Python
65
94

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399