使用Twikit库高效获取Twitter用户点赞推文的技术实践
2025-06-30 17:37:04作者:沈韬淼Beryl
前言
在社交媒体数据分析领域,获取Twitter用户的点赞推文是一项常见需求。本文将详细介绍如何使用Python的Twikit库来实现这一功能,并分享一些实践中的经验技巧。
环境准备
首先需要安装Twikit库,这是一个功能强大的Twitter API客户端库。建议使用Python 3.7及以上版本。
pip install twikit
基本认证流程
Twikit库使用Twitter账号进行认证,支持cookie保存机制,避免频繁登录:
from twikit import Client
import os
client = Client('en-US')
# 检查是否存在已保存的cookie
if os.path.exists('cookies.json'):
client.load_cookies(path='cookies.json')
else:
# 首次登录并保存cookie
client.login(
auth_info_1='用户名',
password='密码'
)
client.save_cookies('cookies.json')
获取点赞推文的核心方法
Twitter API默认只返回最近的100条点赞推文,但通过分页机制可以获取更多数据:
user = client.get_user_by_screen_name('目标用户名')
limit = 500 # 设置要获取的推文数量上限
tweets_to_store = []
tweets = user.get_tweets('Likes', count=500) # 初始化获取
while len(tweets_to_store) < limit and len(tweets) > 0:
# 处理当前批次的推文
for tweet in tweets:
tweets_to_store.append({
'created_at': tweet.created_at,
'favorite_count': tweet.favorite_count,
'full_text': tweet.full_text
})
if len(tweets_to_store) >= limit:
break
# 尝试获取下一页数据
try:
tweets = tweets.next()
except:
break
数据处理与存储
获取到的数据可以方便地转换为DataFrame并保存为CSV文件:
import pandas as pd
df = pd.DataFrame(tweets_to_store)
df.to_csv('liked_tweets.csv', index=False)
注意事项
- 隐私限制:Twitter已将点赞设为私密内容,此方法可能不再适用于非本人账号
- 速率限制:虽然本方法未触发速率限制,但建议控制请求频率
- 数据完整性:分页获取时可能因网络问题导致中断,建议添加重试机制
- 数据时效性:获取的是实时数据,历史数据可能不完整
结语
通过Twikit库,我们可以高效地获取Twitter用户的点赞推文数据。虽然目前Twitter对点赞内容的访问权限有所限制,但这一技术思路仍适用于其他类型的推文获取场景。在实际应用中,建议结合具体需求调整代码逻辑,并遵守平台的使用条款。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355