BoTorch混合优化器对类别型特征的支持扩展
2025-06-25 02:57:32作者:卓艾滢Kingsley
在贝叶斯优化领域,处理混合型输入空间(同时包含连续型和离散型变量)一直是一个具有挑战性的问题。BoTorch作为PyTorch生态中的贝叶斯优化库,近期通过optimize_acqf_mixed_alternating函数实现了对混合空间的交替优化支持。然而,该功能目前尚未完全支持类别型(categorical)特征,这限制了其在更广泛场景下的应用。
混合优化问题背景
混合优化问题在实际应用中十分常见,例如:
- 药物发现中同时优化分子结构(离散)和反应条件(连续)
- 硬件设计中同时选择组件类型(类别)和调整参数(连续)
- 算法调优中同时选择算法类型(类别)和调整超参数(连续)
传统的贝叶斯优化方法主要针对连续空间设计,而混合空间的优化需要特殊处理。BoTorch现有的optimize_acqf_mixed_alternating函数采用交替优化策略:
- 固定离散变量,优化连续变量
- 固定连续变量,优化离散变量
类别型特征的挑战
类别型特征与普通离散特征不同,它们没有自然的顺序关系。例如:
- 颜色选择:红、绿、蓝之间没有数值上的大小关系
- 算法选择:随机森林、SVM、神经网络之间没有内在的排序
当前的实现将离散变量视为有序数值,这在处理真正的类别型特征时会导致次优结果,因为:
- 人为强加的序关系可能误导优化方向
- 邻近点定义不合理(基于数值距离而非类别差异)
技术实现方案
扩展后的优化器采用以下方法处理类别型特征:
离散优化阶段改进:
- 对于类别型特征,定义1-Hamming距离邻域:两个点被认为是邻居如果它们只有一个类别特征不同
- 在候选生成时,枚举所有可能的单类别变化组合
- 保持连续部分不变,仅扰动类别变量
算法优势:
- 保持类别特征的语义完整性,不引入虚假序关系
- 搜索效率高,避免完全枚举所有类别组合
- 与现有框架无缝集成,保持交替优化的整体结构
应用场景与性能考虑
这种扩展特别适合以下场景:
- 高维类别空间(如25个5类别变量,组合爆炸)
- 类别与连续变量存在复杂交互的情况
- 评估成本高的场景,需要高效搜索
性能方面,该方法:
- 避免了完全枚举的高计算成本
- 通过局部搜索平衡探索与开发
- 可与其他改进(如并行评估)结合使用
实现细节
核心实现涉及:
- 识别输入空间中的类别型特征
- 修改邻域生成逻辑,区分数值离散和真正类别
- 保持连续优化部分不变
- 确保与现有API的兼容性
该扩展已在最新版本中合并,为BoTorch用户提供了更完整的混合空间优化支持,特别是在处理真实世界复杂问题时更加灵活和强大。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
878