Matomo设备检测库中的Client Hints技术解析
什么是Client Hints
Client Hints是一项现代Web技术,允许服务器从浏览器获取更详细的客户端设备信息,而无需依赖传统的User-Agent字符串。这项技术在Matomo的device-detector库中得到了实现,为网站分析提供了更精确的设备检测能力。
Client Hints的两种获取方式
1. HTTP Header方式
通过HTTP头部获取Client Hints是传统的方式,需要服务器明确声明希望接收哪些提示信息。服务器可以通过以下三种方式请求客户端提示:
- PHP header函数:
header('accept-ch', implode(', ', [
'sec-ch-ua-full-version',
'sec-ch-ua-full-version-list',
'sec-ch-ua-platform',
'sec-ch-ua-platform-version',
'sec-ch-ua-arch',
'sec-ch-ua-bitness',
'sec-ch-prefers-color-scheme'
]));
- NGINX配置:
server {
add_header accept-ch "sec-ch-ua-full-version, sec-ch-ua-full-version-list, sec-ch-ua-platform, sec-ch-ua-platform-version, sec-ch-ua-arch, sec-ch-ua-bitness, sec-ch-prefers-color-scheme";
}
- HTML meta标签:
<meta http-equiv="Accept-CH" content="sec-ch-ua-full-version, sec-ch-ua-full-version-list, sec-ch-ua-platform, sec-ch-ua-platform-version, sec-ch-ua-arch, sec-ch-ua-bitness, sec-ch-prefers-color-scheme" />
需要注意的是,使用HTTP方式获取的Client Hints通常只在第二次请求时才会生效,因为第一次请求时浏览器还不知道服务器需要哪些提示信息。
2. JavaScript API方式
通过JavaScript的User-Agent Client Hints API可以更直接地获取客户端信息,这种方式能立即获得提示数据,不需要等待第二次请求。以下是典型的实现代码:
async function getClientHints() {
let hints = [
'brands',
'mobile',
'platform',
'platformVersion',
'architecture',
'bitness',
'wow64',
'model',
'uaFullVersion',
'fullVersionList'
];
let hintsData = await navigator.userAgentData.getHighEntropyValues(hints);
return JSON.parse(JSON.stringify(hintsData));
}
获取到数据后,可以通过AJAX等方式将数据发送到服务器进行分析。
Matomo设备检测库的实现
Matomo的device-detector库设计了一个灵活的ClientHints类,能够同时处理来自HTTP头部和JavaScript API的数据。这种设计使得开发者可以根据实际情况选择最适合的获取方式。
在内部实现上,库会将不同来源的数据统一处理,确保无论数据来自HTTP头部还是JavaScript API,都能得到一致的解析结果。例如,对于浏览器品牌和版本信息,无论是通过sec-ch-ua头部传递的字符串格式,还是通过JavaScript API传递的JSON格式,都会被转换为统一的数据结构。
技术优势与应用场景
Client Hints相比传统User-Agent字符串具有多个优势:
- 更精确的数据:直接从浏览器获取信息,减少了UA字符串解析的误差
- 按需获取:只请求需要的提示信息,减少不必要的数据传输
- 更好的隐私控制:用户可以更精细地控制分享哪些设备信息
这项技术特别适合需要精确设备信息的场景,如:
- 网站分析工具
- 响应式设计适配
- 功能兼容性检测
- 性能优化决策
总结
Matomo的device-detector库通过支持Client Hints技术,为开发者提供了更现代、更精确的设备检测方案。无论是通过HTTP头部还是JavaScript API获取数据,都能得到一致且可靠的结果。随着浏览器对这项技术支持的不断完善,Client Hints有望成为未来Web开发中设备检测的标准方式。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00