MLRun v1.10.0-rc1 版本深度解析与特性前瞻
2025-07-01 23:29:00作者:裴锟轩Denise
MLRun 作为一个开源的机器学习运维(MLOps)平台,为数据科学家和机器学习工程师提供了端到端的机器学习生命周期管理能力。在最新发布的 v1.10.0-rc1 候选版本中,MLRun 团队带来了多项重要更新和改进,涵盖了从模型监控到运行时优化等多个关键领域。
核心特性解析
模型监控体系全面升级
本次版本对模型监控功能进行了重大改进,移除了对 taoswrap 的依赖,转而采用更高效的 TSDB 指标查询机制。开发者现在可以指定需要返回的 TSDB 指标列表,显著提升了 get_model_endpoint
调用的性能,特别是在流处理场景下。
模型监控写入器现在支持多工作线程模式,提高了大规模监控场景下的吞吐量。同时修复了 TDengine 时间戳精度问题,现在能够支持微秒级精度,为高精度监控场景提供了更好的支持。
运行时环境优化
MLRun 在运行时环境方面进行了多项改进:
- Spark 和 Dask 运行时现在能够从抢占模式调度约束中自动获取驱动和执行器的配置参数,优化了资源利用率
- MPIJob 的服务器端轮询机制得到改进,提高了作业启动的可靠性
- 引入了 Python 3.11 支持,Jupyter 和 API 服务镜像均已升级到 Python 3.11 版本
- GPU 镜像升级到 CUDA 12.8.1,为深度学习任务提供了更好的硬件加速支持
存储与数据管理增强
在数据存储管理方面,新版本引入了多项改进:
- 批量删除对象机制解决了大规模删除操作可能导致的超时问题
- 修复了带标签查询时的排序问题,确保"latest"标签始终优先显示
- 改进了时间戳处理逻辑,能够正确处理不带毫秒部分的时间戳
- 数据存储现在支持解析"ds://"格式的URL,提升了与IPython环境的集成度
文档与教程完善
MLRun 团队持续完善文档体系,新增了多个实用教程和说明:
- 向量数据库使用教程,帮助开发者快速上手向量检索场景
- 本地运行与远程运行的对比说明,帮助用户理解不同环境下的行为差异
- 模型监控中TDengine和Kafka的配置指南
- 秘密管理最佳实践,提高安全性意识
- Spark数据摄取详细说明,扩展了数据源支持
技术架构改进
依赖管理与构建系统
项目构建系统进行了现代化改造:
- 从传统的setup.py迁移到pyproject.toml,符合Python打包最新标准
- 严格限制pip版本到25.0.x系列,确保构建环境一致性
- 自动化依赖升级机制,保持第三方库处于最新稳定版本
- 移除了Python 3.11的lint检查,为全面支持Python 3.11铺平道路
性能优化与代码质量
在性能优化方面:
- 模型端点Pydantic模型构建过程得到优化
- 移除了大量已弃用代码,保持代码库精简
- 服务端和客户端单元测试运行器分离,提高测试效率
- 改进了假设测试的健康检查,修复了CI中的测试失败问题
使用建议与升级注意事项
对于计划升级到v1.10.0版本的用户,需要注意以下几点:
- 本地开发环境建议同步升级到Python 3.11以获得最佳兼容性
- 模型监控配置需要相应调整,特别是使用TDengine的场景
- 升级后需要重建自定义镜像以确保所有组件版本兼容
- 注意检查是否有使用已移除的废弃API,及时更新代码
这个候选版本展示了MLRun作为成熟MLOps平台的持续进化能力,从核心功能到开发者体验都进行了全面优化。正式版本发布后,将为机器学习工程化提供更强大、更稳定的支持。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
52
461

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
185

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.09 K

React Native鸿蒙化仓库
C++
179
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
607
59

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4