MLRun v1.10.0-rc1 版本深度解析与特性前瞻
2025-07-01 03:12:43作者:裴锟轩Denise
MLRun 作为一个开源的机器学习运维(MLOps)平台,为数据科学家和机器学习工程师提供了端到端的机器学习生命周期管理能力。在最新发布的 v1.10.0-rc1 候选版本中,MLRun 团队带来了多项重要更新和改进,涵盖了从模型监控到运行时优化等多个关键领域。
核心特性解析
模型监控体系全面升级
本次版本对模型监控功能进行了重大改进,移除了对 taoswrap 的依赖,转而采用更高效的 TSDB 指标查询机制。开发者现在可以指定需要返回的 TSDB 指标列表,显著提升了 get_model_endpoint 调用的性能,特别是在流处理场景下。
模型监控写入器现在支持多工作线程模式,提高了大规模监控场景下的吞吐量。同时修复了 TDengine 时间戳精度问题,现在能够支持微秒级精度,为高精度监控场景提供了更好的支持。
运行时环境优化
MLRun 在运行时环境方面进行了多项改进:
- Spark 和 Dask 运行时现在能够从抢占模式调度约束中自动获取驱动和执行器的配置参数,优化了资源利用率
- MPIJob 的服务器端轮询机制得到改进,提高了作业启动的可靠性
- 引入了 Python 3.11 支持,Jupyter 和 API 服务镜像均已升级到 Python 3.11 版本
- GPU 镜像升级到 CUDA 12.8.1,为深度学习任务提供了更好的硬件加速支持
存储与数据管理增强
在数据存储管理方面,新版本引入了多项改进:
- 批量删除对象机制解决了大规模删除操作可能导致的超时问题
- 修复了带标签查询时的排序问题,确保"latest"标签始终优先显示
- 改进了时间戳处理逻辑,能够正确处理不带毫秒部分的时间戳
- 数据存储现在支持解析"ds://"格式的URL,提升了与IPython环境的集成度
文档与教程完善
MLRun 团队持续完善文档体系,新增了多个实用教程和说明:
- 向量数据库使用教程,帮助开发者快速上手向量检索场景
- 本地运行与远程运行的对比说明,帮助用户理解不同环境下的行为差异
- 模型监控中TDengine和Kafka的配置指南
- 秘密管理最佳实践,提高安全性意识
- Spark数据摄取详细说明,扩展了数据源支持
技术架构改进
依赖管理与构建系统
项目构建系统进行了现代化改造:
- 从传统的setup.py迁移到pyproject.toml,符合Python打包最新标准
- 严格限制pip版本到25.0.x系列,确保构建环境一致性
- 自动化依赖升级机制,保持第三方库处于最新稳定版本
- 移除了Python 3.11的lint检查,为全面支持Python 3.11铺平道路
性能优化与代码质量
在性能优化方面:
- 模型端点Pydantic模型构建过程得到优化
- 移除了大量已弃用代码,保持代码库精简
- 服务端和客户端单元测试运行器分离,提高测试效率
- 改进了假设测试的健康检查,修复了CI中的测试失败问题
使用建议与升级注意事项
对于计划升级到v1.10.0版本的用户,需要注意以下几点:
- 本地开发环境建议同步升级到Python 3.11以获得最佳兼容性
- 模型监控配置需要相应调整,特别是使用TDengine的场景
- 升级后需要重建自定义镜像以确保所有组件版本兼容
- 注意检查是否有使用已移除的废弃API,及时更新代码
这个候选版本展示了MLRun作为成熟MLOps平台的持续进化能力,从核心功能到开发者体验都进行了全面优化。正式版本发布后,将为机器学习工程化提供更强大、更稳定的支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
498
3.66 K
Ascend Extension for PyTorch
Python
301
343
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
309
134
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
482
暂无简介
Dart
745
180
React Native鸿蒙化仓库
JavaScript
297
347
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882