利用 Apache Doris 实现高效数据处理
在当今的大数据时代,数据处理和分析的需求日益增长。企业和研究人员需要高效、可靠的数据处理工具来处理海量数据。本文将向您介绍如何使用 Apache Doris 结合 Flink Connector 完成高效的数据处理任务。
引言
数据处理的效率和准确性是企业数据分析和决策的关键。Apache Doris 是一款高性能的 MPP(Massively Parallel Processing)数据库,适用于快速查询和分析大规模数据集。结合 Flink Connector,用户可以轻松实现批流一体化的数据处理,大幅提升数据处理效率。
准备工作
环境配置要求
在使用 Apache Doris 和 Flink Connector 之前,您需要确保以下环境配置:
- Java 1.8 或更高版本
- Apache Maven 3.6.0 或更高版本
- Apache Flink 1.11 到 1.20 版本
所需数据和工具
- Doris 数据库实例
- Flink 运行环境
- Flink Doris Connector
模型使用步骤
数据预处理方法
在开始之前,您需要确保数据已经被清洗干净并准备好用于分析和处理。这通常包括去除重复项、空值处理、类型转换等。
模型加载和配置
-
添加依赖
首先,您需要在 Maven 项目中添加 Flink Doris Connector 的依赖项。在
pom.xml文件中添加以下内容:<dependency> <groupId>org.apache.doris</groupId> <artifactId>flink-doris-connector-1.16</artifactId> <version>2.4.0.1</version> </dependency>请根据您的 Flink 版本替换相应的 Connector 和 Flink 依赖版本。
-
构建项目
克隆 Flink Doris Connector 的 GitHub 仓库并构建项目:
git clone https://github.com/apache/doris-flink-connector.git cd doris-flink-connector/flink-doris-connector ./build.sh -
配置 Flink
在 Flink 应用程序中配置 Doris 连接器。以下是一个简单的示例:
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env); String dorisTableDDL = "CREATE TABLE doris_table (" + " id INT," + " name STRING," + " age INT" + ") WITH (" + " 'connector' = 'doris'," + " 'fenodes' = 'FE_IP:8030'," + " 'table.identifier' = 'db.table'," + " 'username' = 'root'," + " 'password' = 'root_password'" + ")"; tableEnv.executeSql(dorisTableDDL); // 使用 Flink SQL 读取 Doris 数据 tableEnv.executeSql("SELECT * FROM doris_table").print();在这里,您需要根据实际情况替换
fenodes、table.identifier、username和password的值。
任务执行流程
-
数据读取
使用 Flink SQL 读取 Doris 数据库中的数据。
-
数据处理
在 Flink 中进行数据转换、聚合、过滤等操作。
-
数据写入
将处理后的数据写回 Doris 数据库。
结果分析
在任务执行完成后,您需要对输出结果进行解读和分析。检查数据的完整性和准确性,并使用性能评估指标(如处理时间、吞吐量等)来评估数据处理的效果。
结论
通过使用 Apache Doris 和 Flink Connector,您可以实现高效的数据处理任务。这种解决方案不仅提供了批流一体化的数据处理能力,还保证了数据的实时性和准确性。为了进一步提升性能,您可以考虑优化数据模型、调整并行度等策略。
Apache Doris 和 Flink Connector 是处理大规模数据集的强大工具,值得在您的数据处理流程中尝试和应用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00