Kiali Operator中HPA与副本数冲突问题的分析与解决
Kiali作为Istio生态中的重要可视化组件,其Operator实现中近期发现了一个关于Horizontal Pod Autoscaler(HPA)与副本数(replicas)配置冲突的问题。这个问题会导致当同时启用HPA和配置副本数时,系统出现不稳定的副本数波动现象。
问题现象
在Kiali Operator的Helm Chart配置中,当用户同时满足以下两个条件时,就会出现问题:
- 启用了HPA自动伸缩功能
- 在Kiali CR中显式设置了replicas参数
此时Kiali部署的Pod数量会在HPA设置的最小副本数和CR中指定的副本数之间不断波动。例如,当HPA配置minReplicas为3而CR中replicas设为1时,系统会不断在1个和3个Pod之间切换。
根本原因分析
这个问题源于Kiali Operator的设计实现方式。Operator在每次协调(Reconcile)循环中都会根据CR中的配置重新创建Deployment资源。当CR中包含replicas参数时,Operator会强制将Deployment的副本数设置为该值,这会覆盖HPA的调整结果。
具体来说,工作流程如下:
- HPA根据指标自动将副本数调整为minReplicas(如3)
- 任何对Kiali CR的修改(包括ArgoCD等工具的同步操作)都会触发Operator的协调
- Operator在协调过程中重新创建Deployment,并将副本数重置为CR中的值(如1)
- HPA检测到副本数变化后再次调整到minReplicas
- 循环往复,导致副本数不稳定
解决方案
Kiali社区已经通过两个关键修改解决了这个问题:
-
Operator模板修改:在Deployment模板中添加条件判断,当HPA启用时不再设置spec.replicas字段。这样Kubernetes就会完全交由HPA来管理副本数。
-
Helm Chart默认值调整:在Helm Chart中,当检测到HPA启用时,不再向CR中注入默认的replicas值。这避免了用户未显式设置replicas时仍可能出现的冲突。
最佳实践建议
基于此问题的解决经验,对于在Kubernetes中使用HPA的用户,建议遵循以下原则:
-
单一管理原则:对于同一个工作负载,副本数应该只由一个控制器管理(HPA或手动配置),避免多个控制源。
-
显式配置:当启用HPA时,应该在CR中明确不设置replicas参数,而不是依赖默认值。
-
版本升级:使用Kiali 1.87及以上版本的用户可以安全地同时使用HPA和副本配置,Operator会自动处理这种场景。
这个问题展示了Kubernetes中多个控制器协调资源时可能出现的典型冲突,也体现了Kiali社区对生产环境稳定性的重视。通过这次修复,Kiali在自动伸缩场景下的表现将更加稳定可靠。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00