tracing项目在macOS上打印日志时出现资源不可用错误的分析与解决
问题现象
在使用tracing-subscriber库进行日志记录时,部分macOS用户遇到了程序崩溃的问题。具体表现为:当程序通过debug!()宏输出调试信息时,系统会抛出"Resource temporarily unavailable (os error 35)"错误并导致程序panic。
错误分析
从错误堆栈可以看出,问题发生在标准库的stdio模块中,具体是在尝试向标准错误输出(stderr)写入数据时。错误代码35对应的是EAGAIN/EWOULDBLOCK错误,这表明底层文件描述符被设置为非阻塞模式,而当缓冲区满时无法立即完成写入操作。
根本原因
这个问题实际上并非tracing或tracing-subscriber库本身的缺陷,而是与macOS系统的文件描述符处理机制有关。在Unix-like系统中,当一个文件描述符被设置为非阻塞模式(O_NONBLOCK)时,如果I/O操作不能立即完成,系统会返回EAGAIN错误而非阻塞等待。
在macOS环境下,某些第三方程序可能会修改标准输入/输出文件描述符的阻塞模式,而Rust标准库默认期望这些文件描述符处于阻塞模式。当tracing-subscriber尝试通过这些被修改过的描述符输出日志时,就会遇到上述问题。
解决方案
临时解决方案
-
对于开发环境,可以考虑将日志重定向到文件而非控制台:
let file = std::fs::File::create("debug.log").unwrap(); tracing_subscriber::fmt() .with_writer(file) .init(); -
调整日志级别,减少控制台输出量:
tracing_subscriber::fmt() .with_max_level(tracing::Level::INFO) .init();
永久解决方案
-
在程序启动时显式设置标准输出的阻塞模式:
use nix::fcntl::{fcntl, FcntlArg, OFlag}; fn set_stdout_blocking() -> Result<(), std::io::Error> { let flags = fcntl(1, FcntlArg::F_GETFL)?; let new_flags = OFlag::from_bits_truncate(flags) & !OFlag::O_NONBLOCK; fcntl(1, FcntlArg::F_SETFL(new_flags))?; Ok(()) } -
使用tracing-subscriber的缓冲写入功能:
tracing_subscriber::fmt() .with_writer(std::io::stderr) .with_ansi(false) .init();
最佳实践建议
-
在生产环境中,建议将日志输出到文件或专门的日志收集系统,而非直接输出到控制台。
-
对于需要大量日志输出的场景,考虑使用异步日志记录或缓冲机制,避免直接同步写入。
-
在跨平台开发时,应当特别注意不同操作系统对文件描述符处理的差异。
-
对于关键应用,建议实现自定义的panic处理程序,避免因日志输出失败导致整个应用崩溃。
总结
这个问题展示了在跨平台开发中可能遇到的微妙差异。虽然表面上是日志库的问题,但实际上是系统级文件描述符处理方式的不同所致。通过理解底层机制并采取适当的预防措施,开发者可以确保日志系统在各种环境下稳定运行。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C084
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00