tracing项目在macOS上打印日志时出现资源不可用错误的分析与解决
问题现象
在使用tracing-subscriber库进行日志记录时,部分macOS用户遇到了程序崩溃的问题。具体表现为:当程序通过debug!()宏输出调试信息时,系统会抛出"Resource temporarily unavailable (os error 35)"错误并导致程序panic。
错误分析
从错误堆栈可以看出,问题发生在标准库的stdio模块中,具体是在尝试向标准错误输出(stderr)写入数据时。错误代码35对应的是EAGAIN/EWOULDBLOCK错误,这表明底层文件描述符被设置为非阻塞模式,而当缓冲区满时无法立即完成写入操作。
根本原因
这个问题实际上并非tracing或tracing-subscriber库本身的缺陷,而是与macOS系统的文件描述符处理机制有关。在Unix-like系统中,当一个文件描述符被设置为非阻塞模式(O_NONBLOCK)时,如果I/O操作不能立即完成,系统会返回EAGAIN错误而非阻塞等待。
在macOS环境下,某些第三方程序可能会修改标准输入/输出文件描述符的阻塞模式,而Rust标准库默认期望这些文件描述符处于阻塞模式。当tracing-subscriber尝试通过这些被修改过的描述符输出日志时,就会遇到上述问题。
解决方案
临时解决方案
-
对于开发环境,可以考虑将日志重定向到文件而非控制台:
let file = std::fs::File::create("debug.log").unwrap(); tracing_subscriber::fmt() .with_writer(file) .init(); -
调整日志级别,减少控制台输出量:
tracing_subscriber::fmt() .with_max_level(tracing::Level::INFO) .init();
永久解决方案
-
在程序启动时显式设置标准输出的阻塞模式:
use nix::fcntl::{fcntl, FcntlArg, OFlag}; fn set_stdout_blocking() -> Result<(), std::io::Error> { let flags = fcntl(1, FcntlArg::F_GETFL)?; let new_flags = OFlag::from_bits_truncate(flags) & !OFlag::O_NONBLOCK; fcntl(1, FcntlArg::F_SETFL(new_flags))?; Ok(()) } -
使用tracing-subscriber的缓冲写入功能:
tracing_subscriber::fmt() .with_writer(std::io::stderr) .with_ansi(false) .init();
最佳实践建议
-
在生产环境中,建议将日志输出到文件或专门的日志收集系统,而非直接输出到控制台。
-
对于需要大量日志输出的场景,考虑使用异步日志记录或缓冲机制,避免直接同步写入。
-
在跨平台开发时,应当特别注意不同操作系统对文件描述符处理的差异。
-
对于关键应用,建议实现自定义的panic处理程序,避免因日志输出失败导致整个应用崩溃。
总结
这个问题展示了在跨平台开发中可能遇到的微妙差异。虽然表面上是日志库的问题,但实际上是系统级文件描述符处理方式的不同所致。通过理解底层机制并采取适当的预防措施,开发者可以确保日志系统在各种环境下稳定运行。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00