UIS-RNN 开源项目安装与使用指南
2024-08-07 17:36:11作者:房伟宁
1、项目介绍
关于 UIS-RNN
UIS-RNN(Unbounded Interleaved-State Recurrent Neural Network)是Google发布的无界交错状态循环神经网络算法库,对应论文《Fully Supervised Speaker Diarization》中提到的方法。此算法旨在解决序列数据的分割及聚类问题,通过学习样本实现对说话人识别等任务的支持。
该算法最早由Google在论文《Fully Supervised Speaker Diarization》中提出,其目标是在没有时间戳的情况下区分不同的说话者。尽管开源版本与内部使用的版本存在些许差异,但基本原理保持一致。
相关技术
- Python 版本要求3.5及以上。
- NumPy 要求版本至少1.15.1。
- PyTorch 需要版本1.3.0或以上。
- SciPy 需要1.1.0版本(仅用于评估)。
2、项目快速启动
安装步骤
为了快速启动UIS-RNN项目,在命令行环境中执行以下命令即可完成库的安装:
pip3 install uisrnn
或者:
-m pip install uisrnn
运行示例
运行一个简单的演示,以熟悉UIS-RNN的基本操作流程。使用预设的数据集进行训练,并保存模型,最后进行测试并展示结果。可以通过以下命令来运行:
python3 demo.py --train_iteration=1000 -l=0.001
此命令将利用toy_training_data.npz文件中的数据进行模型训练,然后存储模型到硬盘;接着对toy_testing_data.npz数据进行推断处理,打印出推理结果,并将平均精度存入文本文件中。
3、应用案例和最佳实践
示例场景
UIS-RNN在语音识别领域有着广泛的应用,特别是对于多说话人的识别和分类。例如,在会议电话录音分析中,可以自动标注不同时间段内发言的人是谁,这极大地方便了后续的内容整理工作。
最佳实践建议
- 在处理大量语音数据时,预处理步骤尤为重要,包括但不限于噪声过滤、音量标准化等。
- 使用适当的特征表示,如MFCC特征,可以提高模型的准确性。
- 根据实际应用场景调整模型参数,比如迭代次数、学习率等,以达到最佳效果。
4、典型生态项目
生态项目一览
UIS-RNN库因其灵活性和高效性吸引了不少开发者进一步扩展其功能,衍生出了多个基于原库的增强版或特定领域的应用实例:
Speaker-Diarization
- 简介: Taylor Lu在此基础上实现了利用UIS-RNN结合GhostVLAD的说话人识别系统,特别地增强了对开放集合(openset)说话者的支持。
- 用途: 适用于各类对话或会议记录,能够自动区分录音中的各个参与者。
UIS-RNN-SML
- 描述: DonkeyShot21提出的UIS-RNN变种,专注于监督在线说话人识别,特别是在多领域数据上采用样例均值损失(Sample Mean Loss)提升性能。
- 优势: 提高了跨不同说话风格和环境变化下模型的鲁棒性和泛化能力。
这些项目不仅体现了UIS-RNN的多功能性和可定制性,还促进了机器学习社区的发展,提供了一系列可供探索和改进的基线方案。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
404
3.14 K
Ascend Extension for PyTorch
Python
224
250
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220