Encore项目中的ENCORE_RUNTIME_LIB环境变量问题解析
Encore是一个现代化的应用开发平台,它通过提供内置的基础设施和工具链来简化后端开发。在使用Encore的JavaScript/TypeScript运行时,开发者可能会遇到一个常见问题:"The ENCORE_RUNTIME_LIB environment variable is not set"错误。
问题背景
当开发者尝试直接运行包含Encore运行时引用的代码时,系统会抛出关于ENCORE_RUNTIME_LIB环境变量未设置的错误。这是因为Encore运行时需要加载一个名为"encore-runtime.node"的本地二进制模块,而这个模块的路径需要通过环境变量指定。
问题本质
Encore的设计理念是提供一个完整的开发环境,而不是一个孤立的库。它需要:
- 预计算的API元数据(通过ENCORE_APP_META或ENCORE_APP_META_PATH提供)
- 基础设施资源的运行时配置
- 正确的运行时库路径(ENCORE_RUNTIME_LIB)
这些要求使得直接运行包含Encore引用的代码变得复杂,因为缺少这些环境配置。
解决方案演进
Encore团队针对这个问题提供了几个解决方案:
-
使用encore run命令:这是官方推荐的方式,它会自动设置所有必需的环境变量和基础设施。
-
临时解决方案:手动设置环境变量:
- Windows:
ENCORE_RUNTIME_LIB=C:\Users\<USER>\.encore\runtimes\js\encore-runtime.node - Linux:
ENCORE_RUNTIME_LIB=/home/<USER>/.encore/runtimes/js/encore-runtime.node
- Windows:
-
encore exec命令:在1.46.16版本中新增,可以正确设置环境后执行任意命令,例如:
encore exec -- npx prisma db seed -
测试场景:使用
encore test代替npm test来确保测试环境正确配置。
最佳实践
根据Encore的设计理念,开发者应该:
- 始终使用Encore提供的命令行工具(encore run、encore test、encore exec)来运行代码。
- 避免直接引用Encore运行时而不通过官方工具链。
- 对于数据库种子等操作,使用encore exec来确保环境正确配置。
- 测试时使用encore test而不是直接运行测试框架。
技术实现细节
Encore运行时的工作机制要求:
- 必须能够找到并加载encore-runtime.node二进制模块
- 需要访问应用的元数据描述
- 需要基础设施的配置信息
这些要求使得直接运行变得复杂,而通过官方工具链则可以自动处理这些依赖关系。
总结
Encore通过提供完整的工具链来简化开发者的工作,虽然这在一定程度上限制了直接运行代码的灵活性,但确保了开发环境的一致性和可靠性。开发者应该适应这种工作流,充分利用官方提供的工具来获得最佳开发体验。
对于特殊需求,如数据库种子或测试,应使用新提供的encore exec和encore test命令,而不是尝试绕过Encore的环境设置机制。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00