Encore项目中的ENCORE_RUNTIME_LIB环境变量问题解析
Encore是一个现代化的应用开发平台,它通过提供内置的基础设施和工具链来简化后端开发。在使用Encore的JavaScript/TypeScript运行时,开发者可能会遇到一个常见问题:"The ENCORE_RUNTIME_LIB environment variable is not set"错误。
问题背景
当开发者尝试直接运行包含Encore运行时引用的代码时,系统会抛出关于ENCORE_RUNTIME_LIB环境变量未设置的错误。这是因为Encore运行时需要加载一个名为"encore-runtime.node"的本地二进制模块,而这个模块的路径需要通过环境变量指定。
问题本质
Encore的设计理念是提供一个完整的开发环境,而不是一个孤立的库。它需要:
- 预计算的API元数据(通过ENCORE_APP_META或ENCORE_APP_META_PATH提供)
- 基础设施资源的运行时配置
- 正确的运行时库路径(ENCORE_RUNTIME_LIB)
这些要求使得直接运行包含Encore引用的代码变得复杂,因为缺少这些环境配置。
解决方案演进
Encore团队针对这个问题提供了几个解决方案:
-
使用encore run命令:这是官方推荐的方式,它会自动设置所有必需的环境变量和基础设施。
-
临时解决方案:手动设置环境变量:
- Windows:
ENCORE_RUNTIME_LIB=C:\Users\<USER>\.encore\runtimes\js\encore-runtime.node - Linux:
ENCORE_RUNTIME_LIB=/home/<USER>/.encore/runtimes/js/encore-runtime.node
- Windows:
-
encore exec命令:在1.46.16版本中新增,可以正确设置环境后执行任意命令,例如:
encore exec -- npx prisma db seed -
测试场景:使用
encore test代替npm test来确保测试环境正确配置。
最佳实践
根据Encore的设计理念,开发者应该:
- 始终使用Encore提供的命令行工具(encore run、encore test、encore exec)来运行代码。
- 避免直接引用Encore运行时而不通过官方工具链。
- 对于数据库种子等操作,使用encore exec来确保环境正确配置。
- 测试时使用encore test而不是直接运行测试框架。
技术实现细节
Encore运行时的工作机制要求:
- 必须能够找到并加载encore-runtime.node二进制模块
- 需要访问应用的元数据描述
- 需要基础设施的配置信息
这些要求使得直接运行变得复杂,而通过官方工具链则可以自动处理这些依赖关系。
总结
Encore通过提供完整的工具链来简化开发者的工作,虽然这在一定程度上限制了直接运行代码的灵活性,但确保了开发环境的一致性和可靠性。开发者应该适应这种工作流,充分利用官方提供的工具来获得最佳开发体验。
对于特殊需求,如数据库种子或测试,应使用新提供的encore exec和encore test命令,而不是尝试绕过Encore的环境设置机制。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00