Webiny项目中自定义Lexical节点的渲染问题解析
在Webiny项目的开发过程中,扩展Lexical编辑器并实现自定义节点的渲染是一个常见需求。本文将以一个实际案例为基础,深入分析如何正确实现自定义Lexical节点在Webiny Headless CMS中的渲染。
问题背景
开发者在Webiny v5.40.5版本中尝试扩展Lexical编辑器,创建了名为layoutContainer和layoutItem的自定义节点。这些节点能够成功插入、保存并通过GraphQL API获取,但在页面刷新后,节点内容虽然被获取,却无法正确渲染出富文本编辑器界面。
初始解决方案分析
开发者最初尝试通过RichTextLexicalRenderer组件来渲染保存的数据:
{
type: "cms-content-form-renderer",
modelId: "page",
render(props) {
return <RichTextLexicalRenderer
value={props.data?.content}
nodes={[LayoutContainerNode, LayoutItemNode]}
/>
}
}
这种方法虽然能够显示保存的数据,但存在两个明显缺陷:
- 失去了原有的表单布局结构
- 内容变为不可编辑状态
正确配置方法
经过深入分析,正确的解决方案需要理解Webiny中不同模块的Lexical配置是独立的。Headless CMS和Page Builder各自拥有自己的Lexical配置上下文,需要分别进行配置。
1. 多模块配置
需要在应用程序中同时为Headless CMS和Page Builder配置Lexical编辑器:
import { LexicalEditorConfig } from "@webiny/app-headless-cms";
import { LexicalEditorConfig as LexicalEditorConfigAppPageBuilder } from "@webiny/app-page-builder";
export const App = () => {
return (
<Admin>
{/* 其他组件... */}
<LexicalEditorConfig>
<Plugin name="insertColumns" element={<InsertColumnsPlugin />} />
<ToolbarAction name="insertColumns" element={<InsertColumnsAction />} />
<Node name="layoutContainerNode" node={LayoutContainerNode} />
<Node name="layoutItemNode" node={LayoutItemNode} />
</LexicalEditorConfig>
<LexicalEditorConfigAppPageBuilder>
<LexicalEditorConfigAppPageBuilder.Heading.Node
name="layoutContainerNode"
node={LayoutContainerNode}
/>
{/* 其他Page Builder节点配置... */}
</LexicalEditorConfigAppPageBuilder>
</Admin>
);
};
2. 渲染性能优化
最终的解决方案中引入了debounceRender高阶组件来优化编辑器渲染性能:
import { RichTextEditor } from "@webiny/lexical-editor";
import debounceRender from "react-debounce-render";
const DecoratedEditor = RichTextEditor.createDecorator((original) => debounceRender(original));
export const App = () => {
return (
<Admin>
{/* 其他配置... */}
<DecoratedEditor />
</Admin>
);
};
技术要点总结
-
模块隔离性:Webiny中不同模块(Headless CMS、Page Builder等)的Lexical配置是相互独立的,需要分别进行配置。
-
节点注册:自定义节点需要在所有相关模块中注册,确保在各种上下文中都能正确识别和渲染。
-
渲染优化:对于复杂的富文本编辑器,使用防抖技术可以显著提升性能,避免不必要的重渲染。
-
上下文区分:
RichTextLexicalRenderer适用于只读场景,而可编辑场景需要使用完整的编辑器配置。
通过以上分析和解决方案,开发者可以成功在Webiny项目中实现自定义Lexical节点的完整功能,包括编辑和渲染能力。这一案例也展示了Webiny框架中模块化设计和上下文隔离的重要性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00