gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator
2024-09-21 12:24:56作者:尤辰城Agatha
项目介绍
gym-mtsim 是一个开源项目,它将 MetaTrader 5 交易平台与 OpenAI Gym 环境相结合,为开发者提供了一个强大的强化学习(RL)基础,用于构建和测试交易算法。它不仅适合 RL 研究,同时也适用于传统回测和市场分析。
gym-mtsim 的核心是一个真实的市场模拟器,它模拟了 MetaTrader 5 平台的主要功能,包括订单管理、账户状态跟踪等。此外,它还提供了一个名为 MtEnv 的 Gym 环境,这个环境提供了复杂且结构化的动作空间和观察空间,支持多资产交易、概率控制以及特征提取。
项目快速启动
在开始之前,请确保您已经安装了 Python 3.8+ 和 pip。
安装 gym-mtsim:
pip install gym-mtsim
安装 MetaTrader 5:
- 从 MetaTrader 5 官方网站下载并安装 MetaTrader 5 软件。
- 打开软件并创建一个演示账户。
运行示例:
from gym_mtsim import MtSimulator, OrderType, Timeframe
# 创建模拟器实例
sim = MtSimulator(
unit='USD',
balance=10000,
leverage=100,
stop_out_level=0.2,
hedge=False,
)
# 设置模拟器时间
sim.current_time = datetime(2021, 8, 30, 0, 17, 52, tzinfo=pytz.UTC)
# 创建订单
order1 = sim.create_order(
order_type=OrderType.Buy,
symbol='EURUSD',
volume=1,
fee=0.0003,
)
# 模拟时间前进
sim.tick(timedelta(days=2))
# 创建另一个订单
order2 = sim.create_order(
order_type=OrderType.Sell,
symbol='USDJPY',
volume=2,
fee=0.01,
)
# 再次模拟时间前进
sim.tick(timedelta(days=5))
# 获取当前状态
state = sim.get_state()
print(state)
# 关闭所有订单
order1_profit = sim.close_order(order1)
order2_profit = sim.close_order(order2)
# 再次获取当前状态
state = sim.get_state()
print(state)
应用案例和最佳实践
案例 1: 使用 gym-mtsim 进行回测
您可以使用 gym-mtsim 的 MtSimulator 类对现有的交易策略进行详细的历史回测,以评估其性能。这可以帮助您了解您的策略在不同的市场条件下的表现,并对其进行优化。
案例 2: 使用 gym-mtsim 开发强化学习交易策略
您可以使用 gym-mtsim 的 MtEnv 类创建一个 Gym 环境,并使用强化学习算法来训练和优化您的交易模型。这可以帮助您开发出更智能、更有效的交易策略。
最佳实践:
- 在开始之前,请确保您已经熟悉了 MetaTrader 5 平台和 OpenAI Gym 环境。
- 使用 gym-mtsim 的文档和示例代码作为参考。
- 定期评估和优化您的交易策略。
典型生态项目
- gym-anytrading: 一个简单、灵活且全面的 OpenAI Gym 交易环境,适用于各种金融产品。
- stable-baselines3: 一个用于强化学习的开源库,提供了多种强化学习算法的实现。
- PyTorch: 一个开源的机器学习库,提供了强大的深度学习功能。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322