gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator
2024-09-21 17:03:10作者:尤辰城Agatha
项目介绍
gym-mtsim 是一个开源项目,它将 MetaTrader 5 交易平台与 OpenAI Gym 环境相结合,为开发者提供了一个强大的强化学习(RL)基础,用于构建和测试交易算法。它不仅适合 RL 研究,同时也适用于传统回测和市场分析。
gym-mtsim 的核心是一个真实的市场模拟器,它模拟了 MetaTrader 5 平台的主要功能,包括订单管理、账户状态跟踪等。此外,它还提供了一个名为 MtEnv 的 Gym 环境,这个环境提供了复杂且结构化的动作空间和观察空间,支持多资产交易、概率控制以及特征提取。
项目快速启动
在开始之前,请确保您已经安装了 Python 3.8+ 和 pip。
安装 gym-mtsim:
pip install gym-mtsim
安装 MetaTrader 5:
- 从 MetaTrader 5 官方网站下载并安装 MetaTrader 5 软件。
- 打开软件并创建一个演示账户。
运行示例:
from gym_mtsim import MtSimulator, OrderType, Timeframe
# 创建模拟器实例
sim = MtSimulator(
unit='USD',
balance=10000,
leverage=100,
stop_out_level=0.2,
hedge=False,
)
# 设置模拟器时间
sim.current_time = datetime(2021, 8, 30, 0, 17, 52, tzinfo=pytz.UTC)
# 创建订单
order1 = sim.create_order(
order_type=OrderType.Buy,
symbol='EURUSD',
volume=1,
fee=0.0003,
)
# 模拟时间前进
sim.tick(timedelta(days=2))
# 创建另一个订单
order2 = sim.create_order(
order_type=OrderType.Sell,
symbol='USDJPY',
volume=2,
fee=0.01,
)
# 再次模拟时间前进
sim.tick(timedelta(days=5))
# 获取当前状态
state = sim.get_state()
print(state)
# 关闭所有订单
order1_profit = sim.close_order(order1)
order2_profit = sim.close_order(order2)
# 再次获取当前状态
state = sim.get_state()
print(state)
应用案例和最佳实践
案例 1: 使用 gym-mtsim 进行回测
您可以使用 gym-mtsim 的 MtSimulator 类对现有的交易策略进行详细的历史回测,以评估其性能。这可以帮助您了解您的策略在不同的市场条件下的表现,并对其进行优化。
案例 2: 使用 gym-mtsim 开发强化学习交易策略
您可以使用 gym-mtsim 的 MtEnv 类创建一个 Gym 环境,并使用强化学习算法来训练和优化您的交易模型。这可以帮助您开发出更智能、更有效的交易策略。
最佳实践:
- 在开始之前,请确保您已经熟悉了 MetaTrader 5 平台和 OpenAI Gym 环境。
- 使用 gym-mtsim 的文档和示例代码作为参考。
- 定期评估和优化您的交易策略。
典型生态项目
- gym-anytrading: 一个简单、灵活且全面的 OpenAI Gym 交易环境,适用于各种金融产品。
- stable-baselines3: 一个用于强化学习的开源库,提供了多种强化学习算法的实现。
- PyTorch: 一个开源的机器学习库,提供了强大的深度学习功能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
646
149
Ascend Extension for PyTorch
Python
207
220
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
286
React Native鸿蒙化仓库
JavaScript
250
318
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873