Cloudera Playbook 使用教程
项目介绍
Cloudera Playbook 是一个用于自动化部署 Cloudera 的 Ansible 剧本。该项目旨在简化 Cloudera 集群的部署和管理过程,通过 Ansible 的强大功能实现自动化配置和部署。Cloudera Playbook 提供了丰富的功能,包括集群的初始化、配置更新、服务添加等,适用于各种规模的 Cloudera 集群。
项目快速启动
安装依赖
首先,确保你的系统已经安装了 git 和 ansible。如果没有安装,可以使用以下命令进行安装:
# 安装 git
yum install git
# 安装 ansible
yum install ansible
克隆项目
克隆 Cloudera Playbook 仓库到本地:
git clone https://github.com/cloudera/cloudera-playbook.git
配置 Ansible
进入克隆的目录并配置 Ansible:
cd cloudera-playbook
vi $HOME/ansible.cfg
在 ansible.cfg 文件中添加以下内容:
[defaults]
# Python 2 版本
inventory = $HOME/cloudera-playbook/dynamic_inventory_cm_py2
# Python 3 版本
# inventory = $HOME/cloudera-playbook/dynamic_inventory_cm_py3
# 默认不收集主机信息,这可以显著提高大型集群的速度
gathering = explicit
# 如果主机不在 'known_hosts' 中,禁用密钥检查
host_key_checking = False
运行 Playbook
根据需要运行相应的 Playbook:
ansible-playbook -i your_inventory_file your_playbook.yml
应用案例和最佳实践
应用案例
Cloudera Playbook 广泛应用于企业级大数据平台的部署和管理。例如,某大型电商公司使用 Cloudera Playbook 自动化部署其数据仓库和分析平台,显著提高了部署效率和系统稳定性。
最佳实践
- 定期更新 Playbook:保持 Playbook 的更新,以利用最新的功能和修复的 bug。
- 使用动态库存:利用动态库存功能,自动管理集群节点的变化。
- 配置管理:使用 Ansible 的配置管理功能,确保集群配置的一致性和可追溯性。
典型生态项目
Cloudera Manager
Cloudera Manager 是 Cloudera 的核心管理工具,提供了集群的可视化管理界面和丰富的管理功能。Cloudera Playbook 与 Cloudera Manager 紧密集成,通过自动化脚本简化集群的管理和维护。
Apache Hadoop
Apache Hadoop 是大数据处理的基础框架,Cloudera Playbook 支持自动化部署和管理 Hadoop 生态系统中的各种组件,如 HDFS、YARN、Hive 等。
Apache Spark
Apache Spark 是一个快速通用的大数据处理引擎,Cloudera Playbook 提供了对 Spark 的自动化部署和管理,使得 Spark 集群的搭建和维护更加便捷。
通过以上内容,您可以快速了解并开始使用 Cloudera Playbook 进行 Cloudera 集群的自动化部署和管理。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00