Cloudera Playbook 使用教程
项目介绍
Cloudera Playbook 是一个用于自动化部署 Cloudera 的 Ansible 剧本。该项目旨在简化 Cloudera 集群的部署和管理过程,通过 Ansible 的强大功能实现自动化配置和部署。Cloudera Playbook 提供了丰富的功能,包括集群的初始化、配置更新、服务添加等,适用于各种规模的 Cloudera 集群。
项目快速启动
安装依赖
首先,确保你的系统已经安装了 git 和 ansible。如果没有安装,可以使用以下命令进行安装:
# 安装 git
yum install git
# 安装 ansible
yum install ansible
克隆项目
克隆 Cloudera Playbook 仓库到本地:
git clone https://github.com/cloudera/cloudera-playbook.git
配置 Ansible
进入克隆的目录并配置 Ansible:
cd cloudera-playbook
vi $HOME/ansible.cfg
在 ansible.cfg 文件中添加以下内容:
[defaults]
# Python 2 版本
inventory = $HOME/cloudera-playbook/dynamic_inventory_cm_py2
# Python 3 版本
# inventory = $HOME/cloudera-playbook/dynamic_inventory_cm_py3
# 默认不收集主机信息,这可以显著提高大型集群的速度
gathering = explicit
# 如果主机不在 'known_hosts' 中,禁用密钥检查
host_key_checking = False
运行 Playbook
根据需要运行相应的 Playbook:
ansible-playbook -i your_inventory_file your_playbook.yml
应用案例和最佳实践
应用案例
Cloudera Playbook 广泛应用于企业级大数据平台的部署和管理。例如,某大型电商公司使用 Cloudera Playbook 自动化部署其数据仓库和分析平台,显著提高了部署效率和系统稳定性。
最佳实践
- 定期更新 Playbook:保持 Playbook 的更新,以利用最新的功能和修复的 bug。
- 使用动态库存:利用动态库存功能,自动管理集群节点的变化。
- 配置管理:使用 Ansible 的配置管理功能,确保集群配置的一致性和可追溯性。
典型生态项目
Cloudera Manager
Cloudera Manager 是 Cloudera 的核心管理工具,提供了集群的可视化管理界面和丰富的管理功能。Cloudera Playbook 与 Cloudera Manager 紧密集成,通过自动化脚本简化集群的管理和维护。
Apache Hadoop
Apache Hadoop 是大数据处理的基础框架,Cloudera Playbook 支持自动化部署和管理 Hadoop 生态系统中的各种组件,如 HDFS、YARN、Hive 等。
Apache Spark
Apache Spark 是一个快速通用的大数据处理引擎,Cloudera Playbook 提供了对 Spark 的自动化部署和管理,使得 Spark 集群的搭建和维护更加便捷。
通过以上内容,您可以快速了解并开始使用 Cloudera Playbook 进行 Cloudera 集群的自动化部署和管理。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00