Cloudera Playbook 使用教程
项目介绍
Cloudera Playbook 是一个用于自动化部署 Cloudera 的 Ansible 剧本。该项目旨在简化 Cloudera 集群的部署和管理过程,通过 Ansible 的强大功能实现自动化配置和部署。Cloudera Playbook 提供了丰富的功能,包括集群的初始化、配置更新、服务添加等,适用于各种规模的 Cloudera 集群。
项目快速启动
安装依赖
首先,确保你的系统已经安装了 git 和 ansible。如果没有安装,可以使用以下命令进行安装:
# 安装 git
yum install git
# 安装 ansible
yum install ansible
克隆项目
克隆 Cloudera Playbook 仓库到本地:
git clone https://github.com/cloudera/cloudera-playbook.git
配置 Ansible
进入克隆的目录并配置 Ansible:
cd cloudera-playbook
vi $HOME/ansible.cfg
在 ansible.cfg 文件中添加以下内容:
[defaults]
# Python 2 版本
inventory = $HOME/cloudera-playbook/dynamic_inventory_cm_py2
# Python 3 版本
# inventory = $HOME/cloudera-playbook/dynamic_inventory_cm_py3
# 默认不收集主机信息,这可以显著提高大型集群的速度
gathering = explicit
# 如果主机不在 'known_hosts' 中,禁用密钥检查
host_key_checking = False
运行 Playbook
根据需要运行相应的 Playbook:
ansible-playbook -i your_inventory_file your_playbook.yml
应用案例和最佳实践
应用案例
Cloudera Playbook 广泛应用于企业级大数据平台的部署和管理。例如,某大型电商公司使用 Cloudera Playbook 自动化部署其数据仓库和分析平台,显著提高了部署效率和系统稳定性。
最佳实践
- 定期更新 Playbook:保持 Playbook 的更新,以利用最新的功能和修复的 bug。
- 使用动态库存:利用动态库存功能,自动管理集群节点的变化。
- 配置管理:使用 Ansible 的配置管理功能,确保集群配置的一致性和可追溯性。
典型生态项目
Cloudera Manager
Cloudera Manager 是 Cloudera 的核心管理工具,提供了集群的可视化管理界面和丰富的管理功能。Cloudera Playbook 与 Cloudera Manager 紧密集成,通过自动化脚本简化集群的管理和维护。
Apache Hadoop
Apache Hadoop 是大数据处理的基础框架,Cloudera Playbook 支持自动化部署和管理 Hadoop 生态系统中的各种组件,如 HDFS、YARN、Hive 等。
Apache Spark
Apache Spark 是一个快速通用的大数据处理引擎,Cloudera Playbook 提供了对 Spark 的自动化部署和管理,使得 Spark 集群的搭建和维护更加便捷。
通过以上内容,您可以快速了解并开始使用 Cloudera Playbook 进行 Cloudera 集群的自动化部署和管理。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00