ScalaCheck 项目中的 Stream 到 LazyList 迁移指南
在 Scala 2.13 版本中,Stream 类被标记为废弃(deprecated),取而代之的是 LazyList。这一变化影响了 ScalaCheck 项目中依赖 Stream 进行数据收缩(shrink)的功能。本文将详细介绍这一迁移过程中可能遇到的问题及解决方案。
背景与问题
ScalaCheck 是一个基于属性的测试库,其收缩功能通过 Shrink trait 实现,该 trait 的核心方法是 shrink(x: T): Stream[T]。随着 Scala 2.13 废弃 Stream 而推荐使用 LazyList,直接使用 Stream 会产生编译警告。
解决方案
1. 使用 Shrink.withLazyList 构造器
ScalaCheck 提供了 Shrink.withLazyList 方法作为替代方案,它接受 T => LazyList[T] 类型的函数,并在内部自动转换为 Stream:
implicit val shrinkInstance: Shrink[MyType] = Shrink.withLazyList { x =>
// 返回 LazyList[MyType]
}
2. 直接实现 Shrink trait
如果需要对收缩过程有更精细的控制,可以直接实现 Shrink trait,但要注意返回类型仍需是 Stream:
implicit val shrinkInstance: Shrink[MyType] = new Shrink[MyType] {
def shrink(x: MyType): Stream[MyType] = {
// 实现收缩逻辑,最后转换为 Stream
myLazyList.toStream
}
}
实际应用示例
以下是一个完整的数据类型收缩实现示例,展示了如何正确使用 LazyList:
sealed trait SimpleTypeD
case class SCombination(tds: List[SimpleTypeD]) extends SimpleTypeD
case class SNot(s: SimpleTypeD) extends SimpleTypeD
// 其他 case class 定义...
implicit val shrinkSimpleTypeD: Shrink[SimpleTypeD] = Shrink.withLazyList {
case t: SCombination =>
var s: LazyList[SimpleTypeD] = SEmpty #:: STop #:: LazyList.empty
if (t.tds.size == 1) t.tds.head #:: s
else {
// 收缩逻辑实现
s
}
case t: SNot =>
SEmpty #:: STop #:: t.s #:: LazyList.empty
// 其他 case 处理...
case _ => LazyList.empty
}
注意事项
-
不要直接返回 LazyList:如果直接定义一个返回
LazyList的隐式转换,ScalaCheck 将无法识别它作为收缩策略,而是会使用默认的无收缩策略。 -
性能考虑:虽然
LazyList是完全惰性的,但在 ScalaCheck 内部仍会被转换为Stream,因此性能差异不大。 -
兼容性:如果项目需要同时支持 Scala 2.12 和 2.13,可以考虑使用交叉编译或条件导入来处理差异。
结论
迁移 ScalaCheck 中的收缩实现从 Stream 到 LazyList 是一个相对简单的过程,关键在于正确使用 Shrink.withLazyList 构造器。理解 ScalaCheck 内部如何处理收缩策略对于实现有效的自定义收缩逻辑至关重要。通过本文的指导,开发者可以顺利完成这一迁移,同时保持测试代码的清晰和高效。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00