如何在WandB项目中自定义日志输出方案
2025-05-24 17:52:22作者:凤尚柏Louis
背景介绍
WandB是一个流行的机器学习实验跟踪工具,它默认会向终端输出大量运行信息。在实际项目中,我们经常需要将这些输出信息整合到自己的日志系统中,以便统一管理和分析。
问题分析
WandB默认使用自己的输出函数(termlog/termwarn/termerror)而非Python标准logging模块,这导致开发者无法直接通过Python的logging配置来捕获这些输出。虽然可以通过获取"wandb"日志器来添加处理器,但这种方法会捕获到大量调试信息,而无法精确控制需要记录的内容。
解决方案
我们可以通过重写WandB的输出函数来实现自定义日志记录。以下是具体实现步骤:
1. 创建自定义日志器
首先需要创建一个独立的日志器实例,并配置所需的处理器:
import logging
from rich.logging import RichHandler
# 创建自定义日志器
custom_logger = logging.getLogger("wandb_terminal")
custom_logger.setLevel(logging.INFO)
custom_logger.propagate = False # 防止日志向上传播
# 添加Rich处理器用于控制台输出
rich_handler = RichHandler()
custom_logger.addHandler(rich_handler)
# 添加文件处理器用于持久化日志
file_handler = logging.FileHandler("wandb_redirected_terminal.log")
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
file_handler.setFormatter(formatter)
custom_logger.addHandler(file_handler)
2. 重写WandB输出函数
保存原始函数引用,然后创建自定义函数来同时调用原始函数和自定义日志记录:
import wandb
# 保存原始函数引用
original_termlog = wandb.termlog
original_termwarn = wandb.termwarn
original_termerror = wandb.termerror
def custom_termlog(string="", newline=True, repeat=True):
original_termlog(string) # 保持原有终端输出
if string:
custom_logger.info(string) # 记录到自定义日志器
def custom_termwarn(string="", newline=True, repeat=True):
original_termwarn(string)
if string:
custom_logger.warning(string)
def custom_termerror(string="", newline=True, repeat=True):
original_termerror(string)
if string:
custom_logger.error(string)
3. 替换WandB默认函数
# 替换WandB的默认输出函数
wandb.termlog = custom_termlog
wandb.termwarn = custom_termwarn
wandb.termerror = custom_termerror
4. 初始化WandB并测试
# 初始化WandB
wandb.init(project="misc-test")
# 测试日志输出
for i in range(10):
wandb.log({"step": i})
wandb.finish()
技术要点解析
-
日志器隔离:创建独立的日志器实例可以避免干扰其他模块的日志配置。
-
函数重写:通过保存原始函数引用并创建包装函数,我们可以在保持原有功能的同时添加自定义行为。
-
日志级别控制:可以根据需要调整日志级别,只记录重要信息。
-
格式统一:通过自定义Formatter可以统一所有日志的输出格式。
扩展应用
这种技术方案不仅适用于WandB,也可以应用于其他使用自定义输出函数的库。通过类似的方法,我们可以:
- 将不同来源的日志统一到同一个系统中
- 添加额外的日志处理逻辑(如过滤敏感信息)
- 实现日志的多目的地输出(控制台、文件、网络等)
- 集成更丰富的日志展示工具(如Rich)
注意事项
- 确保在WandB初始化前完成函数替换
- 考虑线程安全性,特别是在多线程环境中
- 对于生产环境,建议添加日志轮转机制防止日志文件过大
- 可以根据项目需要调整日志格式和内容
通过这种方案,开发者可以灵活地将WandB的输出集成到自己的日志系统中,实现更专业的日志管理和分析。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0109AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp英语课程填空题提示缺失问题分析6 freeCodeCamp课程页面空白问题的技术分析与解决方案7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
216
2.22 K

暂无简介
Dart
520
116

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
981
580

Ascend Extension for PyTorch
Python
65
96

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
557
86

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399