PyTorch Vision项目中MPS内存分配问题的分析与解决
2025-05-13 12:28:31作者:钟日瑜
背景介绍
在PyTorch Vision项目的持续集成测试中,开发团队发现了一个与MPS(Metal Performance Shaders)后端相关的内存分配问题。这个问题导致在macOS设备上运行的测试用例无法正常执行,出现了内存分配失败的错误。
问题现象
测试用例在执行过程中抛出了以下错误信息:
RuntimeError: MPS backend out of memory (MPS allocated: 0 bytes, other allocations: 0 bytes, max allowed: 1.70 GB). Tried to allocate 0 bytes on private pool.
这个错误表明MPS后端尝试分配内存时遇到了限制,尽管当前已分配内存显示为0字节,系统仍然拒绝了新的内存分配请求。
技术分析
MPS是苹果提供的Metal Performance Shaders框架,它允许开发者利用苹果设备的GPU进行高性能计算。PyTorch通过MPS后端为macOS设备提供了GPU加速支持。
内存分配错误通常由以下几个原因引起:
- 内存限制设置:MPS后端默认设置了内存分配上限(1.70GB),这是为了防止应用程序占用过多系统资源
- 内存碎片化:即使显示可用内存充足,内存碎片化也可能导致分配失败
- 设备兼容性:不同macOS设备的GPU内存容量不同,可能导致测试在不同设备上表现不一致
解决方案探索
开发团队最初考虑了几种可能的解决方案:
- 调整内存限制:通过设置环境变量
PYTORCH_MPS_HIGH_WATERMARK_RATIO=0.0来禁用内存上限 - 优化内存使用:检查测试用例是否有不必要的大内存分配
- 更新依赖版本:确保PyTorch核心库与Vision项目的兼容性
经过深入调查,团队发现问题实际上与PyTorch近期停止对macOS x86架构的支持有关,而非纯粹的MPS内存管理问题。这一变更导致了测试环境的兼容性问题。
最终解决方案
通过合并相关修复代码,团队确保了测试环境与PyTorch核心库的兼容性。这一改动使得MPS测试能够正常通过,解决了最初的内存分配错误。
经验总结
这个案例展示了几个重要的开发经验:
- 表面现象可能掩盖根本原因:看似是内存分配的问题,实际根源可能是环境兼容性
- 持续集成的重要性:自动化测试能够快速暴露兼容性问题
- 跨团队协作:与PyTorch核心团队保持沟通有助于快速定位问题
对于使用PyTorch Vision的开发者和研究人员,建议在macOS环境下:
- 确保使用支持M1/M2芯片的PyTorch版本
- 关注PyTorch官方对macOS架构支持的变更
- 合理设置内存相关参数,平衡性能和稳定性
通过这次问题的解决,PyTorch Vision项目在macOS平台上的稳定性和兼容性得到了进一步提升。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869