PyTorch Vision项目中MPS内存分配问题的分析与解决
2025-05-13 08:06:56作者:钟日瑜
背景介绍
在PyTorch Vision项目的持续集成测试中,开发团队发现了一个与MPS(Metal Performance Shaders)后端相关的内存分配问题。这个问题导致在macOS设备上运行的测试用例无法正常执行,出现了内存分配失败的错误。
问题现象
测试用例在执行过程中抛出了以下错误信息:
RuntimeError: MPS backend out of memory (MPS allocated: 0 bytes, other allocations: 0 bytes, max allowed: 1.70 GB). Tried to allocate 0 bytes on private pool.
这个错误表明MPS后端尝试分配内存时遇到了限制,尽管当前已分配内存显示为0字节,系统仍然拒绝了新的内存分配请求。
技术分析
MPS是苹果提供的Metal Performance Shaders框架,它允许开发者利用苹果设备的GPU进行高性能计算。PyTorch通过MPS后端为macOS设备提供了GPU加速支持。
内存分配错误通常由以下几个原因引起:
- 内存限制设置:MPS后端默认设置了内存分配上限(1.70GB),这是为了防止应用程序占用过多系统资源
- 内存碎片化:即使显示可用内存充足,内存碎片化也可能导致分配失败
- 设备兼容性:不同macOS设备的GPU内存容量不同,可能导致测试在不同设备上表现不一致
解决方案探索
开发团队最初考虑了几种可能的解决方案:
- 调整内存限制:通过设置环境变量
PYTORCH_MPS_HIGH_WATERMARK_RATIO=0.0
来禁用内存上限 - 优化内存使用:检查测试用例是否有不必要的大内存分配
- 更新依赖版本:确保PyTorch核心库与Vision项目的兼容性
经过深入调查,团队发现问题实际上与PyTorch近期停止对macOS x86架构的支持有关,而非纯粹的MPS内存管理问题。这一变更导致了测试环境的兼容性问题。
最终解决方案
通过合并相关修复代码,团队确保了测试环境与PyTorch核心库的兼容性。这一改动使得MPS测试能够正常通过,解决了最初的内存分配错误。
经验总结
这个案例展示了几个重要的开发经验:
- 表面现象可能掩盖根本原因:看似是内存分配的问题,实际根源可能是环境兼容性
- 持续集成的重要性:自动化测试能够快速暴露兼容性问题
- 跨团队协作:与PyTorch核心团队保持沟通有助于快速定位问题
对于使用PyTorch Vision的开发者和研究人员,建议在macOS环境下:
- 确保使用支持M1/M2芯片的PyTorch版本
- 关注PyTorch官方对macOS架构支持的变更
- 合理设置内存相关参数,平衡性能和稳定性
通过这次问题的解决,PyTorch Vision项目在macOS平台上的稳定性和兼容性得到了进一步提升。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
867
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
265
305

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3