Apache Fury 反序列化 Lambda 表达式时的数组越界问题分析
2025-06-25 20:17:29作者:殷蕙予
问题背景
Apache Fury 是一个高性能的序列化框架,在 Java 生态系统中作为 JDK 序列化的替代方案。在实际应用中,当通过 Fury 序列化并反序列化包含 Lambda 表达式的异常对象时,可能会遇到 ArrayIndexOutOfBoundsException 异常。
问题现象
在 RPC 应用场景中,当服务端抛出异常并通过 Fury 序列化后发送给客户端时,客户端在反序列化过程中可能会遇到以下异常栈:
java.lang.ArrayIndexOutOfBoundsException: Index -1 out of bounds for length 512
at io.fury.collection.IntArray.pop(IntArray.java:51)
at io.fury.resolver.MapRefResolver.reference(MapRefResolver.java:194)
at io.fury.builder.SerializedLambdaFuryRefCodec_1_1361449601.read(SerializedLambdaFuryRefCodec_1_1361449601.java:193)
at io.fury.serializer.LambdaSerializer.read(LambdaSerializer.java:85)
问题根源
经过分析,这个问题主要源于 Fury 在反序列化 Lambda 表达式时的引用解析机制存在缺陷。具体表现为:
- 引用跟踪不一致:在解释器模式(interpreter mode)和代码生成模式(codegen mode)之间存在引用跟踪的不一致性
- 数组越界:在
MapRefResolver.reference方法中尝试从IntArray弹出元素时,数组索引变为负数 - 异步编译影响:问题在启用异步编译(asyncCompilation)时更容易出现
解决方案
针对这个问题,可以采取以下解决方案:
- 禁用异步编译:在构建 Fury 实例时,通过
.withAsyncCompilation(false)禁用异步编译功能 - 使用线程安全的 Fury 实例:推荐使用
ThreadLocalFury来管理 Fury 实例,确保线程安全 - 正确初始化 Fury:使用 Fury 提供的工厂方法构建实例,确保所有必要的配置都能正确设置
最佳实践
为了避免类似问题,在使用 Apache Fury 时建议遵循以下最佳实践:
- 异常序列化:对于异常对象的序列化,确保异常类及其所有字段都可序列化
- Lambda 表达式:尽量避免在异常类中包含 Lambda 表达式,或者确保这些 Lambda 表达式是可序列化的
- 实例管理:使用
ThreadLocalFury或类似的线程安全机制来管理 Fury 实例 - 配置检查:仔细检查 Fury 的配置选项,特别是引用跟踪和异步编译相关的设置
总结
Apache Fury 作为一个高性能的序列化框架,在大多数情况下表现良好,但在处理包含 Lambda 表达式的异常对象序列化时可能会出现数组越界问题。通过禁用异步编译、使用线程安全的 Fury 实例管理方式,可以有效地避免这个问题。开发者在实际应用中应当注意异常对象的序列化特性,并合理配置 Fury 实例以确保稳定运行。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.56 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
233
97
暂无简介
Dart
728
175
React Native鸿蒙化仓库
JavaScript
287
340
Ascend Extension for PyTorch
Python
287
320
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19