Apache Fury 反序列化 Lambda 表达式时的数组越界问题分析
2025-06-25 20:17:29作者:殷蕙予
问题背景
Apache Fury 是一个高性能的序列化框架,在 Java 生态系统中作为 JDK 序列化的替代方案。在实际应用中,当通过 Fury 序列化并反序列化包含 Lambda 表达式的异常对象时,可能会遇到 ArrayIndexOutOfBoundsException 异常。
问题现象
在 RPC 应用场景中,当服务端抛出异常并通过 Fury 序列化后发送给客户端时,客户端在反序列化过程中可能会遇到以下异常栈:
java.lang.ArrayIndexOutOfBoundsException: Index -1 out of bounds for length 512
at io.fury.collection.IntArray.pop(IntArray.java:51)
at io.fury.resolver.MapRefResolver.reference(MapRefResolver.java:194)
at io.fury.builder.SerializedLambdaFuryRefCodec_1_1361449601.read(SerializedLambdaFuryRefCodec_1_1361449601.java:193)
at io.fury.serializer.LambdaSerializer.read(LambdaSerializer.java:85)
问题根源
经过分析,这个问题主要源于 Fury 在反序列化 Lambda 表达式时的引用解析机制存在缺陷。具体表现为:
- 引用跟踪不一致:在解释器模式(interpreter mode)和代码生成模式(codegen mode)之间存在引用跟踪的不一致性
- 数组越界:在
MapRefResolver.reference方法中尝试从IntArray弹出元素时,数组索引变为负数 - 异步编译影响:问题在启用异步编译(asyncCompilation)时更容易出现
解决方案
针对这个问题,可以采取以下解决方案:
- 禁用异步编译:在构建 Fury 实例时,通过
.withAsyncCompilation(false)禁用异步编译功能 - 使用线程安全的 Fury 实例:推荐使用
ThreadLocalFury来管理 Fury 实例,确保线程安全 - 正确初始化 Fury:使用 Fury 提供的工厂方法构建实例,确保所有必要的配置都能正确设置
最佳实践
为了避免类似问题,在使用 Apache Fury 时建议遵循以下最佳实践:
- 异常序列化:对于异常对象的序列化,确保异常类及其所有字段都可序列化
- Lambda 表达式:尽量避免在异常类中包含 Lambda 表达式,或者确保这些 Lambda 表达式是可序列化的
- 实例管理:使用
ThreadLocalFury或类似的线程安全机制来管理 Fury 实例 - 配置检查:仔细检查 Fury 的配置选项,特别是引用跟踪和异步编译相关的设置
总结
Apache Fury 作为一个高性能的序列化框架,在大多数情况下表现良好,但在处理包含 Lambda 表达式的异常对象序列化时可能会出现数组越界问题。通过禁用异步编译、使用线程安全的 Fury 实例管理方式,可以有效地避免这个问题。开发者在实际应用中应当注意异常对象的序列化特性,并合理配置 Fury 实例以确保稳定运行。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355