Apache Doris 工作负载分析与诊断实战指南
2025-06-27 01:12:18作者:平淮齐Percy
概述
Apache Doris 作为一款高性能的MPP分析型数据库,在实际生产环境中可能会面临各种工作负载问题。本文将深入讲解如何对Doris集群进行工作负载分析与诊断,帮助DBA和运维人员快速定位和解决性能问题。
工作负载分析的两个阶段
1. 运行时工作负载分析
当集群可用性下降时,可以通过以下步骤进行实时诊断:
1.1 确定集群瓶颈
- 通过监控指标初步判断当前集群瓶颈:内存、CPU还是IO
- 如果多项指标都高,建议优先处理内存问题
1.2 定位高负载工作组
- 查询
workload_group_resource_usage
表 - 根据瓶颈类型找出资源消耗最高的N个工作组
1.3 实施应急措施
- 降低高负载工作组的查询并发度
- 根据瓶颈类型采取不同降级策略:
- CPU瓶颈:设置
cpu_hard_limit
硬限制并降低其值 - IO瓶颈:通过
read_bytes_per_second
限制最大IO - 内存瓶颈:设置
memory_limit
硬限制并降低其值(可能导致查询失败)
- CPU瓶颈:设置
1.4 深入分析原因
- 判断是工作组整体查询并发增加还是特定大查询导致
- 使用
backend_active_tasks
和active_queries
表定位异常SQL - 通过
kill
语句终止问题查询释放资源
2. 历史数据分析
通过审计日志分析历史工作负载模式:
2.1 确认历史瓶颈
- 分析监控历史数据确定集群瓶颈类型
2.2 识别异常SQL
- 有明确预期:根据业务特点定义异常SQL标准
- 无明确预期:使用百分位函数计算历史基准值
- 计算历史tp50/tp75/tp99/tp999等指标
- 对比当前值与历史基准的偏差
2.3 优化异常查询
- SQL重写
- 表结构优化
- 并行度调整
2.4 流量分析
- 检查SQL执行量是否异常增长
- 确认上游业务变化情况
- 考虑集群扩容或实施限流
实用SQL查询示例
1. 工作组资源使用排名
select be_id,workload_group_id,memory_usage_bytes,cpu_usage_percent,local_scan_bytes_per_second
from workload_group_resource_usage
order by memory_usage_bytes,cpu_usage_percent,local_scan_bytes_per_second desc
2. CPU消耗TopN查询
select
t1.query_id as be_query_id,
t1.query_type,
t2.query_id,
t2.workload_group_id,
t2.`database`,
t1.cpu_time,
t2.`sql`
from
(select query_id, query_type,sum(task_cpu_time_ms) as cpu_time
from backend_active_tasks group by query_id, query_type) t1
left join active_queries t2
on t1.query_id = t2.query_id
order by cpu_time desc limit 10;
3. 内存消耗TopN查询
select
t1.query_id as be_query_id,
t1.query_type,
t2.query_id,
t2.workload_group_id,
t1.mem_used
from
(select query_id, query_type, sum(current_used_memory_bytes) as mem_used
from backend_active_tasks group by query_id, query_type) t1
left join active_queries t2
on t1.query_id = t2.query_id
order by mem_used desc limit 10;
4. 扫描数据量TopN查询
select
t1.query_id as be_query_id,
t1.query_type,
t2.query_id,
t2.workload_group_id,
t1.scan_rows,
t1.scan_bytes
from
(select query_id, query_type, sum(scan_rows) as scan_rows,sum(scan_bytes) as scan_bytes
from backend_active_tasks group by query_id,query_type) t1
left join active_queries t2
on t1.query_id = t2.query_id
order by scan_rows desc,scan_bytes desc limit 10;
注意事项
active_queries
表记录FE上的查询,backend_active_tasks
表记录BE上的查询- 并非所有查询都会在FE上注册(如stream load)
- SELECT查询在两个表中的queryId相同
- stream load在
active_queries
中的queryId为空,在backend_active_tasks
中为stream load ID
最佳实践建议
- 定期分析审计日志,建立工作负载基线
- 为关键业务配置独立的工作组
- 设置合理的资源限制和排队策略
- 对异常查询建立自动告警机制
- 保留足够的历史监控数据用于对比分析
通过系统性的工作负载分析和诊断,可以有效提升Apache Doris集群的稳定性和性能表现。
登录后查看全文
热门项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息09GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0273get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java01Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
152
1.97 K

deepin linux kernel
C
22
6

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
426
34

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
238
9

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
988
394

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
193
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
936
554

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
69