Apache Doris 工作负载分析与诊断实战指南
2025-06-27 10:15:51作者:平淮齐Percy
概述
Apache Doris 作为一款高性能的MPP分析型数据库,在实际生产环境中可能会面临各种工作负载问题。本文将深入讲解如何对Doris集群进行工作负载分析与诊断,帮助DBA和运维人员快速定位和解决性能问题。
工作负载分析的两个阶段
1. 运行时工作负载分析
当集群可用性下降时,可以通过以下步骤进行实时诊断:
1.1 确定集群瓶颈
- 通过监控指标初步判断当前集群瓶颈:内存、CPU还是IO
- 如果多项指标都高,建议优先处理内存问题
1.2 定位高负载工作组
- 查询
workload_group_resource_usage表 - 根据瓶颈类型找出资源消耗最高的N个工作组
1.3 实施应急措施
- 降低高负载工作组的查询并发度
- 根据瓶颈类型采取不同降级策略:
- CPU瓶颈:设置
cpu_hard_limit硬限制并降低其值 - IO瓶颈:通过
read_bytes_per_second限制最大IO - 内存瓶颈:设置
memory_limit硬限制并降低其值(可能导致查询失败)
- CPU瓶颈:设置
1.4 深入分析原因
- 判断是工作组整体查询并发增加还是特定大查询导致
- 使用
backend_active_tasks和active_queries表定位异常SQL - 通过
kill语句终止问题查询释放资源
2. 历史数据分析
通过审计日志分析历史工作负载模式:
2.1 确认历史瓶颈
- 分析监控历史数据确定集群瓶颈类型
2.2 识别异常SQL
- 有明确预期:根据业务特点定义异常SQL标准
- 无明确预期:使用百分位函数计算历史基准值
- 计算历史tp50/tp75/tp99/tp999等指标
- 对比当前值与历史基准的偏差
2.3 优化异常查询
- SQL重写
- 表结构优化
- 并行度调整
2.4 流量分析
- 检查SQL执行量是否异常增长
- 确认上游业务变化情况
- 考虑集群扩容或实施限流
实用SQL查询示例
1. 工作组资源使用排名
select be_id,workload_group_id,memory_usage_bytes,cpu_usage_percent,local_scan_bytes_per_second
from workload_group_resource_usage
order by memory_usage_bytes,cpu_usage_percent,local_scan_bytes_per_second desc
2. CPU消耗TopN查询
select
t1.query_id as be_query_id,
t1.query_type,
t2.query_id,
t2.workload_group_id,
t2.`database`,
t1.cpu_time,
t2.`sql`
from
(select query_id, query_type,sum(task_cpu_time_ms) as cpu_time
from backend_active_tasks group by query_id, query_type) t1
left join active_queries t2
on t1.query_id = t2.query_id
order by cpu_time desc limit 10;
3. 内存消耗TopN查询
select
t1.query_id as be_query_id,
t1.query_type,
t2.query_id,
t2.workload_group_id,
t1.mem_used
from
(select query_id, query_type, sum(current_used_memory_bytes) as mem_used
from backend_active_tasks group by query_id, query_type) t1
left join active_queries t2
on t1.query_id = t2.query_id
order by mem_used desc limit 10;
4. 扫描数据量TopN查询
select
t1.query_id as be_query_id,
t1.query_type,
t2.query_id,
t2.workload_group_id,
t1.scan_rows,
t1.scan_bytes
from
(select query_id, query_type, sum(scan_rows) as scan_rows,sum(scan_bytes) as scan_bytes
from backend_active_tasks group by query_id,query_type) t1
left join active_queries t2
on t1.query_id = t2.query_id
order by scan_rows desc,scan_bytes desc limit 10;
注意事项
active_queries表记录FE上的查询,backend_active_tasks表记录BE上的查询- 并非所有查询都会在FE上注册(如stream load)
- SELECT查询在两个表中的queryId相同
- stream load在
active_queries中的queryId为空,在backend_active_tasks中为stream load ID
最佳实践建议
- 定期分析审计日志,建立工作负载基线
- 为关键业务配置独立的工作组
- 设置合理的资源限制和排队策略
- 对异常查询建立自动告警机制
- 保留足够的历史监控数据用于对比分析
通过系统性的工作负载分析和诊断,可以有效提升Apache Doris集群的稳定性和性能表现。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328