Apache Doris 工作负载分析与诊断实战指南
2025-06-27 20:16:18作者:平淮齐Percy
概述
Apache Doris 作为一款高性能的MPP分析型数据库,在实际生产环境中可能会面临各种工作负载问题。本文将深入讲解如何对Doris集群进行工作负载分析与诊断,帮助DBA和运维人员快速定位和解决性能问题。
工作负载分析的两个阶段
1. 运行时工作负载分析
当集群可用性下降时,可以通过以下步骤进行实时诊断:
1.1 确定集群瓶颈
- 通过监控指标初步判断当前集群瓶颈:内存、CPU还是IO
- 如果多项指标都高,建议优先处理内存问题
1.2 定位高负载工作组
- 查询
workload_group_resource_usage表 - 根据瓶颈类型找出资源消耗最高的N个工作组
1.3 实施应急措施
- 降低高负载工作组的查询并发度
- 根据瓶颈类型采取不同降级策略:
- CPU瓶颈:设置
cpu_hard_limit硬限制并降低其值 - IO瓶颈:通过
read_bytes_per_second限制最大IO - 内存瓶颈:设置
memory_limit硬限制并降低其值(可能导致查询失败)
- CPU瓶颈:设置
1.4 深入分析原因
- 判断是工作组整体查询并发增加还是特定大查询导致
- 使用
backend_active_tasks和active_queries表定位异常SQL - 通过
kill语句终止问题查询释放资源
2. 历史数据分析
通过审计日志分析历史工作负载模式:
2.1 确认历史瓶颈
- 分析监控历史数据确定集群瓶颈类型
2.2 识别异常SQL
- 有明确预期:根据业务特点定义异常SQL标准
- 无明确预期:使用百分位函数计算历史基准值
- 计算历史tp50/tp75/tp99/tp999等指标
- 对比当前值与历史基准的偏差
2.3 优化异常查询
- SQL重写
- 表结构优化
- 并行度调整
2.4 流量分析
- 检查SQL执行量是否异常增长
- 确认上游业务变化情况
- 考虑集群扩容或实施限流
实用SQL查询示例
1. 工作组资源使用排名
select be_id,workload_group_id,memory_usage_bytes,cpu_usage_percent,local_scan_bytes_per_second
from workload_group_resource_usage
order by memory_usage_bytes,cpu_usage_percent,local_scan_bytes_per_second desc
2. CPU消耗TopN查询
select
t1.query_id as be_query_id,
t1.query_type,
t2.query_id,
t2.workload_group_id,
t2.`database`,
t1.cpu_time,
t2.`sql`
from
(select query_id, query_type,sum(task_cpu_time_ms) as cpu_time
from backend_active_tasks group by query_id, query_type) t1
left join active_queries t2
on t1.query_id = t2.query_id
order by cpu_time desc limit 10;
3. 内存消耗TopN查询
select
t1.query_id as be_query_id,
t1.query_type,
t2.query_id,
t2.workload_group_id,
t1.mem_used
from
(select query_id, query_type, sum(current_used_memory_bytes) as mem_used
from backend_active_tasks group by query_id, query_type) t1
left join active_queries t2
on t1.query_id = t2.query_id
order by mem_used desc limit 10;
4. 扫描数据量TopN查询
select
t1.query_id as be_query_id,
t1.query_type,
t2.query_id,
t2.workload_group_id,
t1.scan_rows,
t1.scan_bytes
from
(select query_id, query_type, sum(scan_rows) as scan_rows,sum(scan_bytes) as scan_bytes
from backend_active_tasks group by query_id,query_type) t1
left join active_queries t2
on t1.query_id = t2.query_id
order by scan_rows desc,scan_bytes desc limit 10;
注意事项
active_queries表记录FE上的查询,backend_active_tasks表记录BE上的查询- 并非所有查询都会在FE上注册(如stream load)
- SELECT查询在两个表中的queryId相同
- stream load在
active_queries中的queryId为空,在backend_active_tasks中为stream load ID
最佳实践建议
- 定期分析审计日志,建立工作负载基线
- 为关键业务配置独立的工作组
- 设置合理的资源限制和排队策略
- 对异常查询建立自动告警机制
- 保留足够的历史监控数据用于对比分析
通过系统性的工作负载分析和诊断,可以有效提升Apache Doris集群的稳定性和性能表现。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873