SDV项目中的合成数据采样与极端值生成技术
在数据科学和机器学习领域,生成高质量的合成数据是一个重要且具有挑战性的任务。SDV(Synthetic Data Vault)作为一个强大的开源工具包,提供了多种方法来创建逼真的合成数据。本文将深入探讨SDV中的合成数据采样技术,特别是如何生成包含更多极端值的样本。
合成数据采样基础
SDV的核心功能之一是能够学习原始数据中的模式,并在生成的合成数据中重现这些模式。默认情况下,SDV会尽可能准确地模拟原始数据的分布特征。然而,在某些应用场景中,我们可能需要生成比原始数据更极端的样本。
均匀分布采样方法
SDV提供了通过设置default_distribution='uniform'参数来改变采样分布的方法。这种方法会强制模型使用均匀分布而非学习到的分布来生成数据。从实验结果来看,这种方法确实能够产生更多极端值的样本:
- 原始数据中的
amenities_fee列呈现典型的集中分布 - 使用均匀分布后,生成的数据在各个值区间分布更加均匀
- 极端高值和极端低值的出现频率显著提高
条件采样技术
除了改变默认分布外,SDV还提供了条件采样功能。这种方法允许用户指定特定列值的组合及其期望的样本数量。例如,可以要求生成250个预订套房且拥有奖励账户的客人样本,以及100个预订套房但没有奖励账户的客人样本。
条件采样的优势在于:
- 精确控制特定组合的出现频率
- 可以针对性地增加稀有组合的样本量
- 保持数据内部的相关性结构
未来发展方向
基于实际需求,SDV未来可能会引入更多高级采样技术:
-
温度参数控制:类似语言模型中的温度参数,可以调节采样分布的"锐度",使模型更倾向于生成极端值
-
马蹄形分布支持:专门用于生成极端案例的特殊分布,适合需要大量异常值或极端组合的场景
-
自适应分布调整:根据用户需求动态调整采样分布,平衡数据真实性和极端值比例
技术建议
对于需要生成包含更多极端值样本的用户,我们建议:
-
首先尝试使用
default_distribution='uniform'参数,这是最简单的实现方式 -
对于特定列的组合需求,使用条件采样可以更精确地控制结果
-
在保持数据合理性的前提下,谨慎调整采样参数,避免生成完全不现实的样本
-
始终验证生成数据的质量,确保极端值的增加不会破坏数据的整体结构和相关性
通过合理运用这些技术,用户可以生成既保持原始数据特征,又包含更多有价值极端案例的合成数据集,为异常检测、边缘案例测试等应用场景提供更好的数据支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00