Glulxe:Glulx虚拟机解释器技术文档
1. 安装指南
为了编译Glulxe,需要使用Glk库。详细信息请参阅Glk首页。 Unix Makefile支持Unix库(如CheapGlk、GlkTerm、RemGlk等)。需要在Makefile中设置三个变量以找到库,并设置OPTIONS行上的适当OS_*常量。
编译方法如下:
make glulxe
编译完成后,运行以下命令来执行Glulx游戏文件:
./glulxe filename.ulx
其中filename.ulx
是Glulx游戏文件的名称。
要在Mac或Windows平台上编译此程序,需要相应的Glk库。
2. 项目使用说明
Glulxe支持自动保存功能,如果Glk库支持的话。目前只有RemGlk和IosGlk支持此功能。使用--autosave
选项可以在每轮结束时写入自动保存文件,而--autorestore
选项可以在启动时加载这些文件,从而从上次自动保存的位置开始游戏。
自动保存的文件默认保存在当前目录下,文件名为autosave.json
和autosave.glksave
。可以使用--autodir
更改目录,使用--autoname
更改基本文件名。
有两种自动保存场景:
防止进程终止
在这种模式下,程序会在每轮结束时自动保存。如果进程可能在后台被终止,这将非常有用。启动时,如果存在自动保存文件,程序会加载它们并继续游戏。
在Unix环境下,可以这样操作:
./glulxe --autosave --autoskiparrange filename.ulx
使用--autoskiparrange
选项可以跳过窗口调整事件时的自动保存。
当重新启动时,如果自动保存文件存在,可以这样操作:
./glulxe --autosave --autoskiparrange --autorestore -autometrics filename.ulx
单轮操作
在这种模式下,解释器会在每次玩家输入时启动,自动恢复,处理输入,自动保存并退出。
在Unix环境下,可以这样操作:
./glulxe --autosave -singleturn filename.ulx
使用-singleturn
选项指示解释器在生成输出段后立即退出。
重新启动时,如果自动保存文件存在,可以这样操作:
./glulxe --autosave --autorestore -singleturn -autometrics filename.ulx
3. 项目API使用文档
Glulxe提供了丰富的API,以下是部分API的使用说明:
--autosave
:启用自动保存功能。--autorestore
:在启动时恢复自动保存的文件。--autodir
:设置自动保存文件的目录。--autoname
:设置自动保存文件的基本名称。--autoskiparrange
:在窗口调整事件时跳过自动保存。-singleturn
:启用单轮操作模式。
更多API使用说明,请参考项目文档。
4. 项目安装方式
请遵循以下步骤进行安装:
- 下载源代码。
- 根据需要配置Makefile文件,包括设置Glk库路径等。
- 执行
make glulxe
命令进行编译。 - 编译成功后,运行
./glulxe filename.ulx
来执行Glulx游戏文件。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0114AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









