Glulxe:Glulx虚拟机解释器技术文档
1. 安装指南
为了编译Glulxe,需要使用Glk库。详细信息请参阅Glk首页。 Unix Makefile支持Unix库(如CheapGlk、GlkTerm、RemGlk等)。需要在Makefile中设置三个变量以找到库,并设置OPTIONS行上的适当OS_*常量。
编译方法如下:
make glulxe
编译完成后,运行以下命令来执行Glulx游戏文件:
./glulxe filename.ulx
其中filename.ulx是Glulx游戏文件的名称。
要在Mac或Windows平台上编译此程序,需要相应的Glk库。
2. 项目使用说明
Glulxe支持自动保存功能,如果Glk库支持的话。目前只有RemGlk和IosGlk支持此功能。使用--autosave选项可以在每轮结束时写入自动保存文件,而--autorestore选项可以在启动时加载这些文件,从而从上次自动保存的位置开始游戏。
自动保存的文件默认保存在当前目录下,文件名为autosave.json和autosave.glksave。可以使用--autodir更改目录,使用--autoname更改基本文件名。
有两种自动保存场景:
防止进程终止
在这种模式下,程序会在每轮结束时自动保存。如果进程可能在后台被终止,这将非常有用。启动时,如果存在自动保存文件,程序会加载它们并继续游戏。
在Unix环境下,可以这样操作:
./glulxe --autosave --autoskiparrange filename.ulx
使用--autoskiparrange选项可以跳过窗口调整事件时的自动保存。
当重新启动时,如果自动保存文件存在,可以这样操作:
./glulxe --autosave --autoskiparrange --autorestore -autometrics filename.ulx
单轮操作
在这种模式下,解释器会在每次玩家输入时启动,自动恢复,处理输入,自动保存并退出。
在Unix环境下,可以这样操作:
./glulxe --autosave -singleturn filename.ulx
使用-singleturn选项指示解释器在生成输出段后立即退出。
重新启动时,如果自动保存文件存在,可以这样操作:
./glulxe --autosave --autorestore -singleturn -autometrics filename.ulx
3. 项目API使用文档
Glulxe提供了丰富的API,以下是部分API的使用说明:
--autosave:启用自动保存功能。--autorestore:在启动时恢复自动保存的文件。--autodir:设置自动保存文件的目录。--autoname:设置自动保存文件的基本名称。--autoskiparrange:在窗口调整事件时跳过自动保存。-singleturn:启用单轮操作模式。
更多API使用说明,请参考项目文档。
4. 项目安装方式
请遵循以下步骤进行安装:
- 下载源代码。
- 根据需要配置Makefile文件,包括设置Glk库路径等。
- 执行
make glulxe命令进行编译。 - 编译成功后,运行
./glulxe filename.ulx来执行Glulx游戏文件。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00