Glulxe:Glulx虚拟机解释器技术文档
1. 安装指南
为了编译Glulxe,需要使用Glk库。详细信息请参阅Glk首页。 Unix Makefile支持Unix库(如CheapGlk、GlkTerm、RemGlk等)。需要在Makefile中设置三个变量以找到库,并设置OPTIONS行上的适当OS_*常量。
编译方法如下:
make glulxe
编译完成后,运行以下命令来执行Glulx游戏文件:
./glulxe filename.ulx
其中filename.ulx是Glulx游戏文件的名称。
要在Mac或Windows平台上编译此程序,需要相应的Glk库。
2. 项目使用说明
Glulxe支持自动保存功能,如果Glk库支持的话。目前只有RemGlk和IosGlk支持此功能。使用--autosave选项可以在每轮结束时写入自动保存文件,而--autorestore选项可以在启动时加载这些文件,从而从上次自动保存的位置开始游戏。
自动保存的文件默认保存在当前目录下,文件名为autosave.json和autosave.glksave。可以使用--autodir更改目录,使用--autoname更改基本文件名。
有两种自动保存场景:
防止进程终止
在这种模式下,程序会在每轮结束时自动保存。如果进程可能在后台被终止,这将非常有用。启动时,如果存在自动保存文件,程序会加载它们并继续游戏。
在Unix环境下,可以这样操作:
./glulxe --autosave --autoskiparrange filename.ulx
使用--autoskiparrange选项可以跳过窗口调整事件时的自动保存。
当重新启动时,如果自动保存文件存在,可以这样操作:
./glulxe --autosave --autoskiparrange --autorestore -autometrics filename.ulx
单轮操作
在这种模式下,解释器会在每次玩家输入时启动,自动恢复,处理输入,自动保存并退出。
在Unix环境下,可以这样操作:
./glulxe --autosave -singleturn filename.ulx
使用-singleturn选项指示解释器在生成输出段后立即退出。
重新启动时,如果自动保存文件存在,可以这样操作:
./glulxe --autosave --autorestore -singleturn -autometrics filename.ulx
3. 项目API使用文档
Glulxe提供了丰富的API,以下是部分API的使用说明:
--autosave:启用自动保存功能。--autorestore:在启动时恢复自动保存的文件。--autodir:设置自动保存文件的目录。--autoname:设置自动保存文件的基本名称。--autoskiparrange:在窗口调整事件时跳过自动保存。-singleturn:启用单轮操作模式。
更多API使用说明,请参考项目文档。
4. 项目安装方式
请遵循以下步骤进行安装:
- 下载源代码。
- 根据需要配置Makefile文件,包括设置Glk库路径等。
- 执行
make glulxe命令进行编译。 - 编译成功后,运行
./glulxe filename.ulx来执行Glulx游戏文件。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00