Azure Sentinel中Entra风险警报误报问题的分析与解决
背景介绍
在Azure Sentinel的安全监控实践中,管理员经常会遇到Entra ID(原Azure AD)风险警报与用户实际活动时间不匹配导致的误报问题。这种情况特别容易发生在管理员对用户风险状态进行手动调整后,系统错误地将管理员操作识别为可疑活动。
问题现象
当管理员在Entra ID中执行以下操作时:
- 将用户标记为安全
- 忽略风险
- 解除用户风险状态
系统会在SecurityAlert表中创建新记录。问题在于,这些记录的时间戳(TimeGenerated)与用户实际活动时间(StartTime/EndTime)可能存在显著差异。现有的"Correlate Unfamiliar sign-in properties & atypical travel alerts"分析规则仅基于TimeGenerated字段进行判断,而忽略了实际用户活动时间,导致产生大量误报。
技术分析
深入分析这个问题,我们发现其核心原因在于:
-
时间戳机制差异:TimeGenerated反映的是警报生成时间,而StartTime/EndTime记录的是实际用户活动时间。当管理员对风险事件进行处理时,这两个时间可能存在较大差距。
-
警报类型识别不足:系统未能有效区分由用户活动触发的原始警报和由管理员操作产生的后续处理记录。
-
规则逻辑局限性:现有分析规则仅简单比较TimeGenerated字段,缺乏对警报上下文和类型的深入分析。
解决方案
经过技术团队研究,提出了以下优化方案:
- 增加注释字段过滤:通过检查ExtendedProperties_json.Comments字段内容,识别管理员操作记录。具体实现是在KQL查询中添加条件:
| extend Comments = tostring(ExtendedProperties_json.Comments)
| where Comments !startswith "Risk detail: Admin"
-
时间字段优化:建议在规则逻辑中同时考虑TimeGenerated和StartTime/EndTime字段,确保时间判断的准确性。
-
警报类型区分:增强规则对不同类型的Entra ID风险警报的识别能力,特别是区分自动生成警报和人工处理记录。
实施效果
该解决方案实施后,能够有效:
- 减少因管理员操作导致的误报
- 提高安全团队对真实威胁的响应效率
- 优化安全运营中心(SOC)的工作流程
- 提升整体安全监控的准确性
最佳实践建议
基于此案例,我们建议Azure Sentinel用户:
- 定期审查和优化分析规则,特别是涉及时间敏感型检测的场景
- 在自定义规则时,充分考虑各种操作场景可能产生的影响
- 利用ExtendedProperties等扩展字段获取更丰富的上下文信息
- 建立规则测试和验证流程,确保变更不会引入新的问题
总结
Azure Sentinel作为企业级SIEM解决方案,其分析规则的精确性直接影响安全运营效率。通过对此类误报问题的深入分析和解决,不仅提升了特定场景下的检测准确性,也为类似问题的处理提供了参考模式。安全团队应当持续关注检测逻辑的优化,平衡检测覆盖率和误报率的平衡。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00