Ardalis.Specification 9.版本重大升级解析
Ardalis.Specification 是一个流行的.NET规范模式实现库,最新发布的9.版本带来了一系列重要的性能优化和功能改进。本文将从技术角度深入分析这次更新的核心内容。
性能优化亮点
9.版本的核心目标是减少内存分配和降低规范模式的内存占用。开发团队对内部实现进行了大规模重构,主要优化包括:
-
表达式集合初始化优化:不再默认初始化为新的List,空集合将返回Enumerable.Empty,显著减少了不必要的内存分配。
-
Take/Skip属性类型变更:从可空int改为非可空int,默认值设为-1,消除了装箱操作和空值检查开销。
-
缓存机制改进:移除了SpecificationEvaluator的cacheEnabled参数,默认启用缓存优化查询性能。
-
构建器重构:简化了OrderedSpecificationBuilder和CacheSpecificationBuilder,优化了包含投影的规范流程。
重要API变更
虽然公共API表面保持了兼容性,但一些高级用法需要注意:
-
废弃方法移除:彻底移除了过时的GetBySpec仓库方法。
-
接口精简:IEntity接口被移除,简化了基础架构。
-
查询方法调整:Select/SelectMany现在必须放在链式调用的最后或单独查询子句中,返回void类型。
-
仓储方法返回值:Update和Delete方法现在返回Task表示受影响的行数,便于业务逻辑处理。
内部架构重构
9.版本对内部组件进行了深度重构:
-
评估器简化:移除了IncludeEvaluator.Default和IncludeEvaluator.Cached单例,统一使用IncludeEvaluator.Instance。
-
构建器统一:所有扩展现在需要同时支持ISpecificationBuilder和ISpecificationBuilder<T, TResult>两种构建器。
-
内存评估器重命名:SearchEvaluator更名为SearchMemoryEvaluator,更准确地反映其用途。
后续版本增强
在9.1和9.2版本中,团队进一步增加了实用功能:
-
WithProjectionOf特性:增强了投影功能,支持更灵活的查询映射。
-
类型推断修复:改进了ThenInclude的类型推断,特别是涉及类型转换的场景。
-
多重TagWith支持:允许为查询添加多个标签,便于调试和日志记录。
升级建议
对于标准用法的用户,升级到9.版本应该相对平滑。但需要注意:
-
如果项目依赖了内部组件或构建自定义扩展,需要检查兼容性。
-
高级用法特别是涉及表达式处理和缓存的代码可能需要调整。
-
建议在测试环境中充分验证后再部署到生产环境。
这次升级使Ardalis.Specification在保持API稳定的同时,显著提升了性能表现,为复杂业务场景下的规范模式应用提供了更高效的基础设施。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00