SparseML项目中SparseGPTModifier的量化与结构化剪枝配置解析
2025-07-04 08:06:48作者:宣聪麟
概述
在模型压缩领域,SparseML作为一个重要的工具库,提供了多种模型优化技术。本文将重点探讨SparseGPTModifier在结构化剪枝中的配置方法,特别是关于量化参数的处理方式。
SparseGPTModifier的配置演变
早期版本的SparseGPTModifier支持quantize参数,允许用户通过设置quantize:false来避免量化操作,仅执行结构化剪枝。然而,随着项目的发展,这一参数已被移除,用户现在可以更简单地通过省略QuantizationModifier来实现相同的效果。
当前最佳实践
对于希望仅进行结构化剪枝而不量化的用户,推荐使用以下配置方式:
oneshot_stage:
pruning_modifiers:
SparseGPTModifier:
sparsity: 0.5
block_size: 128
sequential_update: true
percdamp: 0.01
mask_structure: "16:32"
targets: ["re:model.layers.\\d+$"]
这种配置明确指定了剪枝率(sparsity)、块大小(block_size)、顺序更新(sequential_update)等关键参数,同时通过省略量化相关配置确保模型保持原始精度。
硬件兼容性考虑
值得注意的是,不同的压缩框架对硬件平台的支持情况各异:
- SparseML生成的ONNX模型可以在AMD CPU上运行
- LLM Compressor框架则支持在AMD GPU上运行
模型压缩效果验证
在实际应用中,用户需要注意验证剪枝后的模型效果。结构化剪枝虽然可以减少模型参数数量,但模型文件大小的变化可能不如预期明显,这是因为:
- 剪枝后的稀疏模式需要额外的存储空间
- 模型结构信息仍然保留
- 某些框架实现可能不会立即反映存储效率的提升
项目发展动态
需要特别说明的是,SparseML项目已宣布将于2025年6月初停止维护。对于新项目,建议考虑迁移到更新的框架如LLM Compressor,以获得更好的支持和功能。
总结
模型压缩是一个复杂的工程实践,需要根据具体需求选择合适的工具和配置。通过正确配置SparseGPTModifier,开发者可以在保持模型精度的同时实现有效的结构化剪枝。随着技术发展,及时跟进工具链的更新和迁移也是确保项目长期可维护性的重要因素。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134