使用structlog实现多格式日志输出:控制台与文件分离
在Python日志处理中,structlog是一个强大的结构化日志库,它提供了比标准logging模块更灵活的功能。本文将介绍如何使用structlog实现同时向不同输出目标(控制台和文件)输出不同格式日志的高级配置方案。
问题背景
在实际开发中,我们经常需要将日志同时输出到多个目的地,并且每个目的地可能需要不同的格式。例如:
- 控制台输出:需要人类可读的格式(如ConsoleRenderer或LogfmtRenderer)
- 文件输出:需要结构化格式(如JSONRenderer)便于后续日志分析
解决方案
structlog通过处理器链(processors chain)机制,可以灵活地实现这种需求。核心思路是在处理器链中插入自定义处理器,将日志事件同时输出到不同目标。
完整实现代码
import structlog
import sys
import logging
from pathlib import Path
# 配置标准logging模块的文件处理器
file_handler = logging.FileHandler(Path("file_handler.log"))
root_logger = logging.getLogger()
root_logger.addHandler(file_handler)
root_logger.setLevel(logging.NOTSET)
# 自定义控制台输出处理器
class ConsoleOutProcessor:
def __init__(self, stream):
self._formatter = structlog.dev.ConsoleRenderer()
self._writer = structlog.WriteLogger(stream)
def __call__(self, logger, method, event):
ev = event.copy()
self._writer.msg(self._formatter(logger, method, event))
return ev
# 配置structlog
structlog.configure(
processors=[
structlog.processors.add_log_level,
structlog.processors.TimeStamper(fmt="iso"),
structlog.dev.set_exc_info,
structlog.processors.StackInfoRenderer(),
ConsoleOutProcessor(sys.stdout), # 控制台输出
structlog.dev.ConsoleRenderer(), # 可选,用于调试
structlog.processors.JSONRenderer(), # 文件输出
],
logger_factory=structlog.stdlib.LoggerFactory(),
)
# 使用示例
logger = structlog.get_logger()
logger.info("Info message", a=1, b=2)
logger.error("Error message", a=1, b=2)
try:
1/0
except:
logger.exception("boom")
关键点解析
-
处理器顺序:structlog的处理器是按顺序执行的,因此控制台输出处理器(ConsoleOutProcessor)必须放在JSONRenderer之前。
-
ConsoleOutProcessor:这个自定义处理器实现了:
- 使用ConsoleRenderer格式化日志为人类可读格式
- 通过WriteLogger将格式化后的日志写入指定流(如sys.stdout)
- 返回原始事件字典,不影响后续处理器
-
JSONRenderer:作为最后一个处理器,它将日志事件转换为JSON字符串,然后通过标准logging模块写入文件。
-
异常处理:structlog.dev.set_exc_info处理器会自动捕获异常信息,与logger.exception()配合使用可以输出完整的堆栈跟踪。
进阶建议
-
性能考虑:在生产环境中,可以考虑使用structlog.processors.format_exc_info代替structlog.dev.set_exc_info,因为它性能更好。
-
日志级别过滤:可以在处理器链中添加structlog.stdlib.filter_by_level处理器来实现不同级别的日志过滤。
-
异步日志:对于高性能应用,可以考虑使用structlog的异步处理器来避免I/O阻塞。
-
多文件输出:通过扩展此方案,可以实现向多个文件输出不同格式的日志。
通过这种配置,开发者可以同时获得开发时的友好日志显示和生产环境中的结构化日志存储,兼顾了开发便利性和运维需求。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00