Braintree Ruby 库使用教程
1. 项目介绍
Braintree Ruby 库是一个用于集成 Braintree 支付网关的 Ruby Gem。Braintree 是 PayPal 旗下的服务,提供了一套全面的支付解决方案,支持多种支付方式,包括信用卡、PayPal、Apple Pay 等。该库允许开发者通过 Ruby 语言与 Braintree 进行交互,实现支付处理、客户管理、交易管理等功能。
2. 项目快速启动
安装
首先,确保你已经安装了 Ruby 2.6 或更高版本。然后,可以通过以下命令安装 Braintree Ruby 库:
gem install braintree
或者,将以下内容添加到你的 Gemfile 中:
gem 'braintree', '~> 4.21.0'
然后运行 bundle install 来安装依赖。
配置
在你的 Ruby 代码中,配置 Braintree 的环境和 API 凭证:
require "braintree"
gateway = Braintree::Gateway.new(
:environment => :sandbox,
:merchant_id => "your_merchant_id",
:public_key => "your_public_key",
:private_key => "your_private_key"
)
生成客户端令牌
服务器端需要生成一个客户端令牌,客户端可以使用该令牌初始化 Braintree SDK:
@client_token = gateway.client_token.generate(
:customer_id => a_customer_id
)
创建交易
客户端成功获取支付方法后,会收到一个 payment_method_nonce,服务器端可以使用该 nonce 创建交易:
result = gateway.transaction.sale(
:amount => "10.00",
:payment_method_nonce => nonce_from_the_client,
:device_data => device_data_from_the_client,
:options => {
:submit_for_settlement => true
}
)
if result.success?
puts "Transaction ID: #{result.transaction.id}"
else
puts "Error: #{result.message}"
end
3. 应用案例和最佳实践
应用案例
Braintree Ruby 库广泛应用于电子商务平台、在线服务订阅、数字商品销售等场景。例如,一个在线商店可以使用 Braintree 处理客户的信用卡支付,并管理客户的支付信息。
最佳实践
- 安全传输:确保所有敏感信息(如 API 密钥)在传输过程中使用 HTTPS。
- 错误处理:在交易处理过程中,始终检查
result.success?以确保交易成功。 - 日志记录:在开发和测试阶段,启用详细的日志记录以帮助调试问题。
- 测试环境:在沙盒环境中进行充分的测试,确保所有支付流程都能正常工作。
4. 典型生态项目
Rails 集成
Braintree Ruby 库可以轻松集成到 Ruby on Rails 项目中。通过在 Rails 控制器中生成客户端令牌和处理支付方法 nonce,可以实现无缝的支付体验。
Sinatra 集成
对于轻量级的 Sinatra 应用,Braintree Ruby 库同样提供了简单的集成方式。通过配置 Braintree 网关并处理支付请求,可以快速实现支付功能。
其他 Ruby 框架
Braintree Ruby 库也可以与其他 Ruby 框架(如 Hanami、Grape 等)集成,提供灵活的支付解决方案。
通过以上步骤,你可以快速上手并使用 Braintree Ruby 库实现支付功能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00